Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cure models to estimate time until hospitalization due to COVID-19

Thumbnail
Ver/Abrir
PedrosaLaza_Maria_2022_Cure_models_to_estimate_time_until_hospitalization_Covid_19.pdf - Accepted version (742.7Kb)
Use este enlace para citar
http://hdl.handle.net/2183/34641
Colecciones
  • Investigación (FIC) [1678]
Metadatos
Mostrar el registro completo del ítem
Título
Cure models to estimate time until hospitalization due to COVID-19
Autor(es)
Pedrosa-Laza, Maria
López-Cheda, Ana
Cao, Ricardo
Fecha
2022-01
Cita bibliográfica
Pedrosa-Laza, M., López-Cheda, A. & Cao, R. Cure models to estimate time until hospitalization due to COVID-19. Appl Intell 52, 794–807 (2022). https://doi.org/10.1007/s10489-021-02311-8
Resumen
[Abstract]: A short introduction to survival analysis and censored data is included in this paper. A thorough literature review in the field of cure models has been done. An overview on the most important and recent approaches on parametric, semiparametric and nonparametric mixture cure models is also included. The main nonparametric and semiparametric approaches were applied to a real time dataset of COVID-19 patients from the first weeks of the epidemic in Galicia (NW Spain). The aim is to model the elapsed time from diagnosis to hospital admission. The main conclusions, as well as the limitations of both the cure models and the dataset, are presented, illustrating the usefulness of cure models in this kind of studies, where the influence of age and sex on the time to hospital admission is shown.
Palabras clave
Censored data
COVID-19
Hospital demand
Forecasting
Survival analysis
 
Descripción
This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/s10489-021-02311-8
Versión del editor
https://doi.org/10.1007/s10489-021-02311-8
Derechos
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021
ISSN
1573-7497

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias