Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multithreaded and Spark parallelization of feature selection filters

Thumbnail
Ver/Abrir
EirasFranco_Carlos_2016_Multithreaded_and_Spark_parallelization_of_feature_selection_filters.pdf - Versión aceptada (285.2Kb)
Use este enlace para citar
http://hdl.handle.net/2183/34589
Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España
Colecciones
  • Investigación (FIC) [1679]
Metadatos
Mostrar el registro completo del ítem
Título
Multithreaded and Spark parallelization of feature selection filters
Autor(es)
Eiras-Franco, Carlos
Bolón-Canedo, Verónica
Ramos Garea, Sabela
González-Domínguez, Jorge
Alonso-Betanzos, Amparo
Touriño, Juan
Fecha
2016
Cita bibliográfica
C. Eiras-Franco, V. Bolón-Canedo, S. Ramos, J. González-Domínguez, A. Alonso-Betanzos, and J. Touriño, "Multithreaded and Spark parallelization of feature selection filters", Journal of Computational Science, Vol. 17, Part 3, Nov. 2016, Pp. 609-619, https://doi.org/10.1016/j.jocs.2016.07.002
Es versión de
https://doi.org/10.1016/j.jocs.2016.07.002
Resumen
[Abstract]: Vast amounts of data are generated every day, constituting a volume that is challenging to analyze. Techniques such as feature selection are advisable when tackling large datasets. Among the tools that provide this functionality, Weka is one of the most popular ones, although the implementations it provides struggle when processing large datasets, requiring excessive times to be practical. Parallel processing can help alleviate this problem, effectively allowing users to work with Big Data. The computational power of multicore machines can be harnessed by using multithreading and distributed programming, effectively helping to tackle larger problems. Both these techniques can dramatically speed up the feature selection process allowing users to work with larger datasets. The reimplementation of four popular feature selection algorithms included in Weka is the focus of this work. Multithreaded implementations previously not included in Weka as well as parallel Spark implementations were developed for each algorithm. Experimental results obtained from tests on real-world datasets show that the new versions offer significant reductions in processing times.
Palabras clave
Multithreading
Spark
Feature selection
Machine learning
 
Descripción
©2016 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/bync-nd/4.0/. This version of the article has been accepted for publication in Journal of Computational Science. The Version of Record is available online at https://doi.org/10.1016/j.jocs.2016.07.002
 
Versión final aceptada de: C. Eiras-Franco, V. Bolón-Canedo, S. Ramos, J. González-Domínguez, A. Alonso-Betanzos, and J. Touriño, "Multithreaded and Spark parallelization of feature selection filters", Journal of Computational Science, Vol. 17, Part 3, Nov. 2016, Pp. 609-619
 
Versión del editor
https://doi.org/10.1016/j.jocs.2016.07.002
Derechos
Atribución-NoComercial-SinDerivadas 3.0 España

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias