Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accelerating binary biclustering on platforms with CUDA-enabled GPUs

Thumbnail
Ver/Abrir
GonzalezDominguez_Jorge_2018_Accelerating_binary_biclustering_on_platforms_with_CUDA_enabled_GPUs.pdf (238.1Kb)
Use este enlace para citar
http://hdl.handle.net/2183/34518
Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Accelerating binary biclustering on platforms with CUDA-enabled GPUs
Autor(es)
González-Domínguez, Jorge
Expósito, Roberto R.
Fecha
2018
Cita bibliográfica
J. González-Domínguez and R. R. Expósito, "Accelerating binary biclustering on platforms with CUDA-enabled GPUs", Information Sciences, Vol. 496, Sept. 2019, pp. 317-325, https://doi.org/10.1016/j.ins.2018.05.025
Es versión de
https://doi.org/10.1016/j.ins.2018.05.025
Resumen
[Abstract]: Data mining is nowadays essential in many scientific fields to extract valuable information from large input datasets and transform it into an understandable structure. For instance, biclustering techniques are very useful in identifying subsets of two-dimensional data where both rows and columns are correlated. However, some biclustering techniques have become extremely time-consuming when processing very large datasets, which nowadays prevents their use in many areas of research and industry (such as bioinformatics) that have experienced an explosive growth on the amount of available data. In this work we present CUBiBit, a tool that accelerates the search for relevant biclusters on binary data by exploiting the computational capabilities of CUDA-enabled GPUs as well as the several CPU cores available in most current systems. The experimental evaluation has shown that CUBiBit is up to 116 times faster than the fastest state-of-the-art tool, BiBit, in a system with two Intel Sandy Bridge processors (16 CPU cores) and three NVIDIA K20 GPUs. CUBiBit is publicly available to download from https://sourceforge.net/projects/cubibit
Palabras clave
Data mining
Biclustering
CUDA
GPU
Multithreading
 
Descripción
© 2018 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/bync-nd/4.0/. This version of the article has been accepted for publication in Information Sciences. The Version of Record is available online at https://doi.org/10.1016/j.ins.2018.05.025
 
This is a version of: J. González-Domínguez and R. R. Expósito, "Accelerating binary biclustering on platforms with CUDA-enabled GPUs", Information Sciences, Vol. 496, Sept. 2019, pp. 317-325, https://doi.org/10.1016/j.ins.2018.05.025
 
Versión del editor
https://doi.org/10.1016/j.ins.2018.05.025
Derechos
Atribución-NoComercial-SinDerivadas 3.0 España

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias