Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accelerating binary biclustering on platforms with CUDA-enabled GPUs

Thumbnail
View/Open
GonzalezDominguez_Jorge_2018_Accelerating_binary_biclustering_on_platforms_with_CUDA_enabled_GPUs.pdf (238.1Kb)
Use this link to cite
http://hdl.handle.net/2183/34518
Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España
Collections
  • Investigación (FIC) [1678]
Metadata
Show full item record
Title
Accelerating binary biclustering on platforms with CUDA-enabled GPUs
Author(s)
González-Domínguez, Jorge
Expósito, Roberto R.
Date
2018
Citation
J. González-Domínguez and R. R. Expósito, "Accelerating binary biclustering on platforms with CUDA-enabled GPUs", Information Sciences, Vol. 496, Sept. 2019, pp. 317-325, https://doi.org/10.1016/j.ins.2018.05.025
Is version of
https://doi.org/10.1016/j.ins.2018.05.025
Abstract
[Abstract]: Data mining is nowadays essential in many scientific fields to extract valuable information from large input datasets and transform it into an understandable structure. For instance, biclustering techniques are very useful in identifying subsets of two-dimensional data where both rows and columns are correlated. However, some biclustering techniques have become extremely time-consuming when processing very large datasets, which nowadays prevents their use in many areas of research and industry (such as bioinformatics) that have experienced an explosive growth on the amount of available data. In this work we present CUBiBit, a tool that accelerates the search for relevant biclusters on binary data by exploiting the computational capabilities of CUDA-enabled GPUs as well as the several CPU cores available in most current systems. The experimental evaluation has shown that CUBiBit is up to 116 times faster than the fastest state-of-the-art tool, BiBit, in a system with two Intel Sandy Bridge processors (16 CPU cores) and three NVIDIA K20 GPUs. CUBiBit is publicly available to download from https://sourceforge.net/projects/cubibit
Keywords
Data mining
Biclustering
CUDA
GPU
Multithreading
 
Description
© 2018 Elsevier B.V. All rights reserved. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/bync-nd/4.0/. This version of the article has been accepted for publication in Information Sciences. The Version of Record is available online at https://doi.org/10.1016/j.ins.2018.05.025
 
This is a version of: J. González-Domínguez and R. R. Expósito, "Accelerating binary biclustering on platforms with CUDA-enabled GPUs", Information Sciences, Vol. 496, Sept. 2019, pp. 317-325, https://doi.org/10.1016/j.ins.2018.05.025
 
Editor version
https://doi.org/10.1016/j.ins.2018.05.025
Rights
Atribución-NoComercial-SinDerivadas 3.0 España

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback