Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Selection model for domains across time: application to labour force survey by economic activities

Thumbnail
Ver/Abrir
Lombardia_MariaJose_2020_Selection_model_domains_across_time.pdf (417.1Kb)
Use este enlace para citar
http://hdl.handle.net/2183/34439
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Selection model for domains across time: application to labour force survey by economic activities
Autor(es)
Lombardía, María José
López Vizcaíno, María Esther
Rueda, Cristina
Fecha
2021-03
Cita bibliográfica
Lombardía, M.J., López-Vizcaíno, E. & Rueda, C. Selection model for domains across time: application to labour force survey by economic activities. TEST 30, 228–254 (2021). https://doi.org/10.1007/s11749-020-00712-4
Resumen
[Abstract]: This paper introduces a small area estimation approach that borrows strength across domains (areas) and time and is efficiently used to obtain labour force estimators by economic activity. Specifically, the data across time are used to select different models for each domain; such selection is done with an aggregated mixed generalized Akaike information criterion statistic which is obtained using data across all time points and then is split into individual component for each domain. The approach makes a selection from different estimators, including the direct estimator, synthetic and mixed estimators derived from different models using auxiliary information. Results from several simulation experiments, some with original designs, show the good performance of the approach against standard small area approaches. In addition, it is shown the important practical advantages in the real application.
Palabras clave
Akaike Information Criterion
Bootstrap
Fay-Herriot model
Generalized Degree of Freedom
Monotone model
Small area estimation
Spline regression
 
Descripción
This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/10.1007/s11749-020-00712-4
Versión del editor
https://doi.org/10.1007/s11749-020-00712-4
ISSN
1863-8260

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias