Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bagging cross-validated bandwidths with application to big data

Thumbnail
Ver/abrir
Barreiro_Ures_Daniel_2021_Bagging_cross_validated_bandwidths_with_application_to_big_data.pdf (447.8Kb)
Use este enlace para citar
http://hdl.handle.net/2183/34333
Coleccións
  • Investigación (FIC) [1701]
Metadatos
Mostrar o rexistro completo do ítem
Título
Bagging cross-validated bandwidths with application to big data
Autor(es)
Barreiro-Ures, Daniel
Cao, Ricardo
Francisco-Fernández, Mario
Hart, Jeffrey D.
Data
2021
Cita bibliográfica
D Barreiro-Ures, R Cao, M Francisco-Fernández, J D Hart, Bagging cross-validated bandwidths with application to big data, Biometrika, Volume 108, Issue 4, December 2021, Pages 981–988, https://doi.org/10.1093/biomet/asaa092
É version de
https://doi.org/10.1093/biomet/asaa092
Resumo
Hall & Robinson (2009) proposed and analysed the use of bagged cross-validation to choose the band-width of a kernel density estimator. They established that bagging greatly reduces the noise inherent in ordinary cross-validation, and hence leads to a more efficient bandwidth selector. The asymptotic theory of Hall & Robinson (2009) assumes that N , the number of bagged subsamples, is ∞. We expand upon their theoretical results by allowing N to be finite, as it is in practice. Our results indicate an important difference in the rate of convergence of the bagged cross-validation bandwidth for the cases N = ∞ and N < ∞. Simulations quantify the improvement in statistical efficiency and computational speed that can result from using bagged cross-validation as opposed to a binned implementation of ordinary cross-validation. The performance of the bagged bandwidth is also illustrated on a real, very large, dataset. Finally, a byproduct of our study is the correction of errors appearing in the Hall & Robinson (2009) expression for the asymptotic mean squared error of the bagging selector
Palabras chave
Bagging
Bandwidth
Big data
Cross-validation
Kernel density
 
Descrición
Versión final aceptada de: https://doi.org/10.1093/biomet/asaa092
 
This is a pre-copyedited, author-produced version of an article accepted for publication in [insert journal title] following peer review. The version of record of: D Barreiro-Ures, R Cao, M Francisco-Fernández, J D Hart, Bagging cross-validated bandwidths with application to big data, Biometrika, Volume 108, Issue 4, December 2021, Pages 981– 988, https://doi.org/10.1093/biomet/asaa092, published by Oxford University Press, is available online at: https:// doi.org/10.1093/biomet/asaa092.
 
Versión do editor
https://doi.org/10.1093/biomet/asaa092
Dereitos
Todos os dereitos reservados. All rights reserved.

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións