Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Interactive Visualization of Large Point Clouds Using an Autotuning Multiresolution Out-Of-Core Strategy

Thumbnail
Ver/Abrir
Teijeiro_Diego_2023_Interactive_Visualization_of_Large_Point_Clouds_Using_an_Autotuning_Multiresolution_OutOfCore_Strategy.pdf (3.083Mb)
Use este enlace para citar
http://hdl.handle.net/2183/34298
Atribución-NoComercial-CompartirIgual 4.0 (International)
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 4.0 (International)
Colecciones
  • Investigación (FIC) [1678]
Metadatos
Mostrar el registro completo del ítem
Título
Interactive Visualization of Large Point Clouds Using an Autotuning Multiresolution Out-Of-Core Strategy
Autor(es)
Teijeiro, Diego
Amor, Margarita
Doallo, Ramón
Deibe, David
Fecha
2023
Cita bibliográfica
D. Teijeiro, M. Amor, R. Doallo, and D. Deibe, "Interactive Visualization of Large Point Clouds Using an Autotuning Multiresolution Out-Of-Core Strategy", The Computer Journal, Vol. 66, Issue 7, July 2023, P. 1802–1816, doi: https://doi.org/10.1093/comjnl/bxac179
Resumen
[Abstract]: Due to the increasingly large amount of data acquired into point clouds, from LiDAR (Light Detection and Ranging) sensors and 2D/3D sensors, massive point clouds processing has become a topic with high interest for several fields. Current client-server applications usually use multiresolution out-of-core proposals; nevertheless, the construction of the data structures required is very time-consuming. Furthermore, these multiresolution approaches present problems regarding point density changes between different levels of detail and artifacts due to the rendering of elements entering and leaving the field of view. We present an autotuning multiresolution out-of-core strategy to avoid these problems. Other objectives are reducing loading times while maintaining low memory requirements, high visualization quality and achieving interactive visualization of massive point clouds. This strategy identifies certain parameters, called performance parameters, and defines a set of premises to obtain the goals mentioned above. The optimal parameter values depend on the number of points per cell in the multiresolution structure. We test our proposal in our web-based visualization software designed to work with the structures and storage format used and display massive point clouds achieving interactive visualization of point clouds with more than 27 billion points.
Palabras clave
Efficient data structures
LiDAR
Multiresolution
Out-of-core strategy
Web-visualization
 
Descripción
Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG
Versión del editor
https://doi.org/10.1093/comjnl/bxac179
Derechos
Atribución-NoComercial-CompartirIgual 4.0 (International)

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias