Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (6º. 2023. A Coruña)
  • Ver ítem
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (6º. 2023. A Coruña)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting Inflow Flow in Hydraulic Dams Using Artificial Neural Networks

Thumbnail
Ver/abrir
XoveTIC_2023_proceedings_Parte15.pdf (1.423Mb)
Use este enlace para citar
http://hdl.handle.net/2183/34239
Attribution 4.0 International (CC BY 4.0)
A non ser que se indique outra cousa, a licenza do ítem descríbese como Attribution 4.0 International (CC BY 4.0)
Coleccións
  • Congreso XoveTIC: impulsando el talento científico (6º. 2023. A Coruña) [52]
Metadatos
Mostrar o rexistro completo do ítem
Título
Predicting Inflow Flow in Hydraulic Dams Using Artificial Neural Networks
Autor(es)
Fernández Sánchez, Alberto
Rabuñal, Juan R.
Cebrián Rivero, Daniel
Pazos, A.
Gestal, M.
Cea, Luis
Data
2023
Resumo
[Abstract] Accurate prediction of inflow in dams plays a crucial role in water resource management Kim et al. (2019); Vargas-Garay et al. (2018); Zhong et al. (2018) and risk mitigation Costabile et al. (2020); Rabuñal et al. (2007). This study focuses on the Portodemouros dam (located between the provinces of A Coruña and Pontevedra), where a model based on a Long Short-Term Memory (LSTM) artificial neural network has been implemented to predict dam inflow. The results demonstrate the well-established effectiveness of the LSTM network in flow prediction Dongkyuna and Seokkoob (2021); Jo and Jung (2023); Li et al. (2020) applied to the Portodemouros dam compared to other models. This comparison has already been performed in other studies with both mathematical models Amirreza et al. (2022); Ansori and Anwar (2022); A.R1 et al. (2018); Beck et al. (2017); Ciabatta et al. (2016); Costabile et al. (2020); Fan et al. (2013); Hermanovsky et al. (2017); Kim et al. (2019); Vargas-Garay et al. (2018); Zhong et al. (2018), genetic programming Aytek et al. (2008); Havl´ıˇcek et al. (2013); Heˇrmanovsk´y et al. (2017); Rabuñal et al. (2007) and other machine learning algorithms Jo and Jung (2023). Combining precipitation data from multiple regions and meteorological forecasts significantly enhances the model’s ability to anticipate variations in dam inflow. This improved accuracy is essential for early flood detection and informed decision-making in dam operation. This study forms part of the Marine Science programme (ThinkInAzul) supported by Ministerio de Ciencia e Innovación and Xunta de Galicia with funding from European Union NextGenerationEU (PRTR-C17.I1) and European Maritime and Fisheries Fund
Palabras chave
Presa de Portodemouros
Predicción de caudales
Modelos matemáticos
 
Descrición
Cursos e Congresos, C-155
Versión do editor
https://doi.org/10.17979/spudc.000024.15
Dereitos
Attribution 4.0 International (CC BY 4.0)

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións