Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (6º. 2023. A Coruña)
  • View Item
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (6º. 2023. A Coruña)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mapping the Poverty Proportion in Small Areas under Random Regression Coefficient Poisson Models

Thumbnail
View/Open
XoveTIC_2023_proceedings_Parte18.pdf (178.0Kb)
Use this link to cite
http://hdl.handle.net/2183/34236
Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)
Collections
  • Congreso XoveTIC: impulsando el talento científico (6º. 2023. A Coruña) [52]
Metadata
Show full item record
Title
Mapping the Poverty Proportion in Small Areas under Random Regression Coefficient Poisson Models
Author(s)
Diz-Rosales, Naomi
Lombardía, María José
Morales, Domingo
Date
2023
Abstract
[Abstract] In a complex socio-economic context, policy makers need highly disaggregated poverty indicators. In this work, we develop a methodology in small area estimation to derive predictors of poverty proportions under a random regression coefficient Poisson model, introducing bootstrap estimators of mean squared errors. Maximum likelihood estimators of model parameters and random effects mode predictors are calculated using a Laplace approximation algorithm. Simulation experiments are conducted to investigate the behaviour of the fitting algorithm, the predictors and the mean squared error estimator. The new statistical methodology is applied to data from the Spanish survey of living conditions to map poverty proportions by province and sex, developing a tool to support policy decision making
Keywords
Algoritmos de aproximación
Simulación
Pobreza
 
Description
Cursos e Congresos, C-155
Editor version
https://doi.org/10.17979/spudc.000024.18
Rights
Attribution 4.0 International (CC BY 4.0)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback