Enhancing Pathological Detection and Monitoring in OCT Volumes with Limited Slices using Convolutional Neural Networks and 3D Visualization Techniques

Use este enlace para citar
http://hdl.handle.net/2183/34186
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International (CC BY 4.0)
Metadatos
Mostrar el registro completo del ítemTítulo
Enhancing Pathological Detection and Monitoring in OCT Volumes with Limited Slices using Convolutional Neural Networks and 3D Visualization TechniquesFecha
2023Resumen
[Abstract] Optical Coherence Tomography (OCT) is a non-invasive imaging technique with a
crucial role in the monitoring of a wide range of diseases. In order to make a good diagnosis
it is essential that clinicians can observe any subtle changes that appear in the multiple ocular
structures, so it is imperative that the 3D OCT volumes have good resolution in each axis. Unfortunately,
there is a trade-off between image quality and the number of volume slices. In this
work, we use a convolutional neural network to generate the intermediate synthetic slices of the
OTC volumes and we propose a few variants of a 3D reconstruction algorithm to create visualizations
that emphasize the changes present in multiple retinal structures to aid clinicians in the
diagnostic process
Palabras clave
Tomografía de coherencia óptica
Red neuronal convolucional
Reconstrucción 3D
Red neuronal convolucional
Reconstrucción 3D
Descripción
Cursos e Congresos, C-155
Versión del editor
Derechos
Attribution 4.0 International (CC BY 4.0)