Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (6º. 2023. A Coruña)
  • View Item
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Congreso XoveTIC: impulsando el talento científico
  • Congreso XoveTIC: impulsando el talento científico (6º. 2023. A Coruña)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development of a Virtual Sensor for COD Measurement in a Wastewater Treatment Plant

Thumbnail
View/Open
XoveTIC_2023_proceedings_Parte46.pdf (4.308Mb)
Use this link to cite
http://hdl.handle.net/2183/34120
Attribution 4.0 International (CC BY 4.0)
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0)
Collections
  • Congreso XoveTIC: impulsando el talento científico (6º. 2023. A Coruña) [52]
Metadata
Show full item record
Title
Development of a Virtual Sensor for COD Measurement in a Wastewater Treatment Plant
Author(s)
Díaz-Longueira, Antonio
Timiraos, Míriam
Michelena, Álvaro
Fontenla-Romero, Óscar
Calvo-Rolle, José Luis
Date
2023
Abstract
[Abstract] The objective of the work is to develop a system that allows predicting, from a global perspective, the behavior of the process in a wastewater treatment plant. To do this, the chemical oxygen demand, a variable present in water, is estimated indirectly, avoiding difficult and complex measurements. This estimation is carried out in real time through the relationship between easily measured variables. This modeling will be done through the use of machine learning techniques. Different regression techniques are applied and compared. The dataset contains variables such as pH, conductivity, suspended solids and etc. In thisway, a non-physical indirect sensor is implemented. Thresholds are established for the detection of deviations in the sensor parameters
Keywords
Aprendizaje automático
Conjunto de datos
Aguas residuales
 
Description
Cursos e Congresos , C-155
Editor version
https://doi.org/10.17979/spudc.000024.46
Rights
Attribution 4.0 International (CC BY 4.0)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback