Exploración de técnicas de IA en entornos Big Data para la estimación de parámetros físicos estelares mediante espectros RVS de la misión espacial Gaia

Ver/Abrir
Use este enlace para citar
http://hdl.handle.net/2183/34054Colecciones
Metadatos
Mostrar el registro completo del ítemTítulo
Exploración de técnicas de IA en entornos Big Data para la estimación de parámetros físicos estelares mediante espectros RVS de la misión espacial GaiaAutor(es)
Directores
Álvarez González, Marco AntonioDafonte, Carlos
Fecha
2023Centro/Dpto/Entidad
Universidade da Coruña. Facultade de InformáticaDescripción
Traballo fin de grao (UDC.FIC). Enxeñaría Informática. Curso 2022/2023Resumen
[Resumen] El satélite Gaia de la Agencia Espacial Europea recoge mediciones de miles de millones de
estrellas como parte de su misión, apodada con el mismo nombre. Entre los instrumentos utilizados
en sus mediciones está el Espectrómetro de Velocidad Radial (RVS), que recaba los
espectros de luz emitidos por las estrellas, y de los cuales se puede obtener información valiosa
sobre la composición y parámetros físicos de la misma. Dichos espectros son complejos de
interpretar, por lo que, incluso desde antes de la puesta en órbita del satélite, se analizaron diferentes
alternativas con sistemas inteligentes para poder procesar y extraer esa información
de millones de espectros.
Recientemente, los primeros espectros RVS de Gaia se hicieron públicos en la Gaia Data
Release 3 del 13 de junio del 2022, por lo que es la oportunidad perfecta para explorar técnicas
de la Inteligencia Artificial sobre los datos observacionales obtenidos del satélite en búsqueda
de modelos que puedan representar esos datos con máxima precisión. También se realizará
un análisis exhaustivo de estos datos para detectar posibles problemas que puedan presentar
debido al ruido inherente, cuyo modelo no ha sido precisado. [Abstract] The European Space Agency’s Gaia satellite collects information from billions of stars as
part of its mission, which shares the same name. Among the various instruments used in
its measurements is the Radial Velocity Spectrometer (RVS), which gathers the light spectra
emitted by stars, from which valuable information about their composition and physical parameters
can be obtained. These spectra are complex to interpret, so even before the satellite
had been launched, different alternatives with intelligent systems were analyzed with the goal
of processing and extracting information from millions of spectra.
Recently, the first RVS spectra from Gaia were made public in the Gaia Data Release 3 on
June 13, 2022. This presents the perfect opportunity to explore Artificial Intelligence techniques
on the observational data obtained from the satellite in search of models that can
represent this data with the highest precision. An exhaustive analysis of this data will also be
conducted to detect possible issues that may arise due to inherent noise, which has not been
precisely modelled yet.
Palabras clave
Agencia Espacial Europea
Misión espacial Gaia
RVS (Espectrómetro de Velocidad Radial)
Big Data
IA
Aprendizaje máquina
Aprendizaje profundo
European Space Agency (ESA)
Gaia Space Mission
RVS (Radial Velocity Spectrometer)
Artificial intelligence
Machine learning
Deep learning
Misión espacial Gaia
RVS (Espectrómetro de Velocidad Radial)
Big Data
IA
Aprendizaje máquina
Aprendizaje profundo
European Space Agency (ESA)
Gaia Space Mission
RVS (Radial Velocity Spectrometer)
Artificial intelligence
Machine learning
Deep learning
Derechos
Atribución 3.0 España