Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Site agnostic approach to early detection of cyberbullying on social media networks

Thumbnail
Ver/Abrir
Lopez_Vizcaino_Manuel_2023_Site_agnostic_approach_to_early_detection_of_cyberbullying_on_social_media_networks.pdf (603.9Kb)
Use este enlace para citar
http://hdl.handle.net/2183/33949
Attribution 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International
Colecciones
  • Investigación (FIC) [1679]
Metadatos
Mostrar el registro completo del ítem
Título
Site agnostic approach to early detection of cyberbullying on social media networks
Autor(es)
López-Vizcaíno, Manuel F.
Nóvoa, Francisco
Artieres, Thierry
Cacheda, Fidel
Fecha
2023-05
Cita bibliográfica
M. López-Vizcaíno, F.J. Nóvoa, T. Artieres, and F. Cacheda, "Site Agnostic Approach to Early Detection of Cyberbullying on Social Media Networks", Sensors 2023, 23, 4788. https://doi.org/10.3390/s23104788
Resumen
[Abstract]: The rise in the use of social media networks has increased the prevalence of cyberbullying, and time is paramount to reduce the negative effects that derive from those behaviours on any social media platform. This paper aims to study the early detection problem from a general perspective by carrying out experiments over two independent datasets (Instagram and Vine), exclusively using users’ comments. We used textual information from comments over baseline early detection models (fixed, threshold, and dual models) to apply three different methods of improving early detection. First, we evaluated the performance of Doc2Vec features. Finally, we also presented multiple instance learning (MIL) on early detection models and we assessed its performance. We applied (Formula presented.) ((Formula presented.)) as an early detection metric to asses the performance of the presented methods. We conclude that the inclusion of Doc2Vec features improves the performance of baseline early detection models by up to 79.6%. Moreover, multiple instance learning shows an important positive effect for the Vine dataset, where smaller post sizes and less use of the English language are present, with a further improvement of up to 13%, but no significant enhancement is shown for the Instagram dataset.
Palabras clave
Cyberbullying
Early detection
Machine learning
Multiple-instance learning
Social networks
Text features
 
Versión del editor
https://doi.org/10.3390/s23104788
Derechos
Attribution 4.0 International

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias