Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Ciencias da Saúde
  • Investigación (FCS)
  • Ver ítem
  •   RUC
  • Facultade de Ciencias da Saúde
  • Investigación (FCS)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study

Thumbnail
Ver/Abrir
Widera_Development.pdf (1.975Mb)
Widera_Development_Suppl.zip - Supplementary data (9.397Mb)
Use este enlace para citar
http://hdl.handle.net/2183/33427
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC-BY-NC-ND 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC-BY-NC-ND 4.0)
Colecciones
  • Investigación (FCS) [1293]
Metadatos
Mostrar el registro completo del ítem
Título
Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study
Autor(es)
Widera, Pawel
Welsing, Paco M.J.
Danso, Samuel O.
Peelen, Sjaak
Kloppenburg, Margreet
Loef, Marieke
Marijnissen, Anne C.A.
van Helvoort, Eefje M.
Blanco García, Francisco J
Magalhães, Joana
Berenbaum, Francis
Haugen, Ida Kristin
Bay-Jensen, Anne C
Mobasheri, Ali
Ladel, Christoph
Loughlin, John
Lafeber, Floris
Lalande, Agnes
Larkin, Jonathan
Weinans, Harrie
Bacardit, Jaume
Fecha
2023-12
Cita bibliográfica
Widera P, Welsing PMJ, Danso SO, Peelen S, Kloppenburg M, Loef M, Marijnissen AC, van Helvoort EM, Blanco FJ, Magalhães J, Berenbaum F, Haugen IK, Bay-Jensen AC, Mobasheri A, Ladel C, Loughlin J, Lafeber FPJG, Lalande A, Larkin J, Weinans H, Bacardit J. Development and validation of a machine learning-supported strategy of patient selection for osteoarthritis clinical trials: the IMI-APPROACH study. Osteoarthr Cartil Open. 2023 Aug 18;5(4):100406.
Resumen
[Abstract] Objectives. To efficiently assess the disease-modifying potential of new osteoarthritis treatments, clinical trials need progression-enriched patient populations. To assess whether the application of machine learning results in patient selection enrichment, we developed a machine learning recruitment strategy targeting progressive patients and validated it in the IMI-APPROACH knee osteoarthritis prospective study. Design. We designed a two-stage recruitment process supported by machine learning models trained to rank candidates by the likelihood of progression. First stage models used data from pre-existing cohorts to select patients for a screening visit. The second stage model used screening data to inform the final inclusion. The effectiveness of this process was evaluated using the actual 24-month progression. Results. From 3500 candidate patients, 433 with knee osteoarthritis were screened, 297 were enrolled, and 247 completed the 2-year follow-up visit. We observed progression related to pain (P, 30%), structure (S, 13%), and combined pain and structure (P ​+ ​S, 5%), and a proportion of non-progressors (N, 52%) ∼15% lower vs an unenriched population. Our model predicted these outcomes with AUC of 0.86 [95% CI, 0.81–0.90] for pain-related progression and AUC of 0.61 [95% CI, 0.52–0.70] for structure-related progression. Progressors were ranked higher than non-progressors for P ​+ ​S (median rank 65 vs 143, AUC = 0.75), P (median rank 77 vs 143, AUC = 0.71), and S patients (median rank 107 vs 143, AUC = 0.57). Conclusions. The machine learning-supported recruitment resulted in enriched selection of progressive patients. Further research is needed to improve structural progression prediction and assess this strategy in an interventional trial.
Palabras clave
Osteoarthritis
Disease progression prediction
Machine learning
Patient selection for clinical trials
Inclusion
 
Versión del editor
https://doi.org/10.1016/j.ocarto.2023.100406
Derechos
Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC-BY-NC-ND 4.0)
ISSN
2665-9131

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias