Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Internacional de Doutoramento (EIDUDC)
  • Teses de doutoramento
  • Ver ítem
  •   RUC
  • Escola Internacional de Doutoramento (EIDUDC)
  • Teses de doutoramento
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Learning based Novel Anomaly Detection Methods for Diabetic Retinopathy Screening

Thumbnail
Ver/Abrir
Sutradhar_Shaon_TD_2023.pdf (25.80Mb)
Use este enlace para citar
http://hdl.handle.net/2183/33302
Os titulares dos dereitos de propiedade intelectual autorizan a visualización do contido desta tese a través de Internet, así como a súa reproducción, gravación en soporte informático ou impresión para o seu uso privado e/ou con fins de estudo e de investigación. En nengún caso se permite o uso lucrativo deste documento. Estos dereitos afectan tanto ó resumo da tese como o seu contido Los titulares de los derechos de propiedad intelectual autorizan la visualización del contenido de esta tesis a través de Internet, así como su repoducción, grabación en soporte informático o impresión para su uso privado o con fines de investigación. En ningún caso se permite el uso lucrativo de este documento. Estos derechos afectan tanto al resumen de la tesis como a su contenido
Excepto si se señala otra cosa, la licencia del ítem se describe como Os titulares dos dereitos de propiedade intelectual autorizan a visualización do contido desta tese a través de Internet, así como a súa reproducción, gravación en soporte informático ou impresión para o seu uso privado e/ou con fins de estudo e de investigación. En nengún caso se permite o uso lucrativo deste documento. Estos dereitos afectan tanto ó resumo da tese como o seu contido Los titulares de los derechos de propiedad intelectual autorizan la visualización del contenido de esta tesis a través de Internet, así como su repoducción, grabación en soporte informático o impresión para su uso privado o con fines de investigación. En ningún caso se permite el uso lucrativo de este documento. Estos derechos afectan tanto al resumen de la tesis como a su contenido
Colecciones
  • Teses de doutoramento [2227]
Metadatos
Mostrar el registro completo del ítem
Título
Deep Learning based Novel Anomaly Detection Methods for Diabetic Retinopathy Screening
Autor(es)
Sutradhar, Shaon
Directores
Ortega Hortas, Marcos
Rouco, J.
Fecha
2023
Resumen
[Abstract] Computer-Aided Screening (CAS) systems are getting popularity in disease diagnosis. Modern CAS systems exploit data driven machine learning algorithms including supervised and unsupervised methods. In medical imaging, annotating pathological samples are much harder and time consuming work than healthy samples. Therefore, there is always an abundance of healthy samples and scarcity of annotated and labelled pathological samples. Unsupervised anomaly detection algorithms can be implemented for the development of CAS system using the largely available healthy samples, especially when disease/nodisease decision is important for screening. This thesis proposes unsupervised machine learning methodologies for anomaly detection in retinal fundus images. A novel patchbased image reconstructor architecture for DR detection is presented, that addresses the shortcomings of standard autoencoders-based reconstructors. Furthermore, a full-size image based anomaly map generation methodology is presented, where the potential DR lesions can be visualized at the pixel-level. Afterwards, a novel methodology is proposed to extend the patch-based architecture to a fully-convolutional architecture for one-shot full-size image reconstruction. Finally, a novel methodology for supervised DR classification is proposed that utilizes the anomaly maps.
Palabras clave
Medicina-Informática
Tratamiento de imágenes en medicina
Diagnóstico por imagen
Oftalmología-Informática
 
Derechos
Os titulares dos dereitos de propiedade intelectual autorizan a visualización do contido desta tese a través de Internet, así como a súa reproducción, gravación en soporte informático ou impresión para o seu uso privado e/ou con fins de estudo e de investigación. En nengún caso se permite o uso lucrativo deste documento. Estos dereitos afectan tanto ó resumo da tese como o seu contido Los titulares de los derechos de propiedad intelectual autorizan la visualización del contenido de esta tesis a través de Internet, así como su repoducción, grabación en soporte informático o impresión para su uso privado o con fines de investigación. En ningún caso se permite el uso lucrativo de este documento. Estos derechos afectan tanto al resumen de la tesis como a su contenido
 
Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
 

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias