Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • Ver ítem
  •   RUC
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A comparison of missing value imputation methods applied to daily precipitation in a semi-arid and a humid region of Mexico

Thumbnail
Ver/abrir
Padilla-F_2023_Atm_37.pdf (2.923Mb)
Use este enlace para citar
http://hdl.handle.net/2183/33133
Atribución-NoComercial 3.0 España
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial 3.0 España
Coleccións
  • Investigación (ETSECCP) [826]
Metadatos
Mostrar o rexistro completo do ítem
Título
A comparison of missing value imputation methods applied to daily precipitation in a semi-arid and a humid region of Mexico
Autor(es)
Navarro Céspedes, Juan Manuel
Hernández Anguiano, Jesús Horacio
Alcántara, Camilo
Morales, Jorge
Carreño-Aguilera, Gilberto
Padilla, Francisco
Data
2023
Cita bibliográfica
Navarro Céspedes, Juan Manuel, Jesús Horacio Hernández, Pedro Camilo Alcántara Concepción, Jorge Luis Morales Martínez, Gilberto Carreño Aguilera, and Francisco Padilla. 2023. “A Comparison of Missing Value Imputation Methods Applied to Daily Precipitation in a Semi-Arid and a Humid Region of Mexico”. Atmósfera 37 (January):33-52. https://doi.org/10.20937/ATM.53095
Resumo
[Abstract:] Climatological data with unreliable or missing values is an important area of research, and multiple methods are available to fill in missing data and evaluate data quality. Our study aims to compare the performance of different methods for estimating missing values explicitly designed for precipitation and multipurpose hydrological data. The climate variable used for the analysis was daily precipitation. We considered two different climate and orographic regions to evaluate the effects of altitude, precipitation regime, and percentage of missing data on the Mean Absolute Error of imputed values and performed a homogeneity evaluation of meteorological stations. We excluded meteorological stations with more than 25% missing data from the analysis. In the semi-arid region, ReddPrec (optimal for nine stations) and GCIDW (optimal for eight stations) were the best-performing methods for the 23 stations, with average MAE values of 1.63 mm/day and 1.46 mm/day, respectively. In the humid region, GCIDW was optimal in ~59% of stations, EM in ~24%, and ReddPrec in ~17%, with average MAE values of ~6.0 mm/day, 6.5 mm/day, and ~9.8 mm/day, respectively. This research makes a valuable contribution to identifying the most appropriate methods to impute daily precipitation in different climatic regions of Mexico based on efficiency indicators and homogeneity evaluation.
Palabras chave
Homogeneity
Imputation
Missing precipitation data
 
Versión do editor
https://doi.org/10.20937/ATM.53095
Dereitos
Atribución-NoComercial 3.0 España

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións