Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • View Item
  •   DSpace Home
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A comparison of missing value imputation methods applied to daily precipitation in a semi-arid and a humid region of Mexico

Thumbnail
View/Open
Padilla-F_2023_Atm_37.pdf (2.923Mb)
Use this link to cite
http://hdl.handle.net/2183/33133
Atribución-NoComercial 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial 3.0 España
Collections
  • Investigación (ETSECCP) [826]
Metadata
Show full item record
Title
A comparison of missing value imputation methods applied to daily precipitation in a semi-arid and a humid region of Mexico
Author(s)
Navarro Céspedes, Juan Manuel
Hernández Anguiano, Jesús Horacio
Alcántara, Camilo
Morales, Jorge
Carreño-Aguilera, Gilberto
Padilla, Francisco
Date
2023
Citation
Navarro Céspedes, Juan Manuel, Jesús Horacio Hernández, Pedro Camilo Alcántara Concepción, Jorge Luis Morales Martínez, Gilberto Carreño Aguilera, and Francisco Padilla. 2023. “A Comparison of Missing Value Imputation Methods Applied to Daily Precipitation in a Semi-Arid and a Humid Region of Mexico”. Atmósfera 37 (January):33-52. https://doi.org/10.20937/ATM.53095
Abstract
[Abstract:] Climatological data with unreliable or missing values is an important area of research, and multiple methods are available to fill in missing data and evaluate data quality. Our study aims to compare the performance of different methods for estimating missing values explicitly designed for precipitation and multipurpose hydrological data. The climate variable used for the analysis was daily precipitation. We considered two different climate and orographic regions to evaluate the effects of altitude, precipitation regime, and percentage of missing data on the Mean Absolute Error of imputed values and performed a homogeneity evaluation of meteorological stations. We excluded meteorological stations with more than 25% missing data from the analysis. In the semi-arid region, ReddPrec (optimal for nine stations) and GCIDW (optimal for eight stations) were the best-performing methods for the 23 stations, with average MAE values of 1.63 mm/day and 1.46 mm/day, respectively. In the humid region, GCIDW was optimal in ~59% of stations, EM in ~24%, and ReddPrec in ~17%, with average MAE values of ~6.0 mm/day, 6.5 mm/day, and ~9.8 mm/day, respectively. This research makes a valuable contribution to identifying the most appropriate methods to impute daily precipitation in different climatic regions of Mexico based on efficiency indicators and homogeneity evaluation.
Keywords
Homogeneity
Imputation
Missing precipitation data
 
Editor version
https://doi.org/10.20937/ATM.53095
Rights
Atribución-NoComercial 3.0 España

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback