Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A novel method for anomaly detection using beta Hebbian learning and principal component analysis

Thumbnail
Ver/Abrir
2023_Zayas-Gato_Francisco_A_novel_method_for_anomaly_detection_using_beta_Hebbian_learning.pdf (437.9Kb)
Use este enlace para citar
http://hdl.handle.net/2183/33050
Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/
Colecciones
  • Investigación (EPEF) [590]
Metadatos
Mostrar el registro completo del ítem
Título
A novel method for anomaly detection using beta Hebbian learning and principal component analysis
Autor(es)
Zayas-Gato, Francisco
Michelena, Álvaro
Quintián, Héctor
Jove, Esteban
Casteleiro-Roca, José-Luis
Leitão, Paulo
Calvo-Rolle, José Luis
Fecha
2023-04
Cita bibliográfica
Zayas-Gato F, Michelena Á, Quintián H et al. A novel method for anomaly detection using beta Hebbian learning and principal component analysis. Logic Journal of the IGPL 2023;31:390–9.
Resumen
[Abstract] In this research work a novel two-step system for anomaly detection is presented and tested over several real datasets. In the first step the novel Exploratory Projection Pursuit, Beta Hebbian Learning algorithm, is applied over each dataset, either to reduce the dimensionality of the original dataset or to face nonlinear datasets by generating a new subspace of the original dataset with lower, or even higher, dimensionality selecting the right activation function. Finally, in the second step Principal Component Analysis anomaly detection is applied to the new subspace to detect the anomalies and improve its classification capabilities. This new approach has been tested over several different real datasets, in terms of number of variables, number of samples and number of anomalies. In almost all cases, the novel approach obtained better results in terms of area under the curve with similar standard deviation values. In case of computational cost, this improvement is only remarkable when complexity of the dataset in terms of number of variables is high.
Palabras clave
One-class
Dimensional reduction
BHL
PCA
 
Versión del editor
https://doi.org/10.1093/jigpal/jzac026
Derechos
Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/
ISSN
1368-9894

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias