Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • Ver ítem
  •   RUC
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A decision-making tool for port operations based on downtime risk and met-ocean conditions including infragravity wave forecast

Thumbnail
Ver/abrir
CostasGomezR_2023_JMSaE_11-3.pdf (2.322Mb)
Use este enlace para citar
http://hdl.handle.net/2183/32947
Atribución 3.0 España
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 3.0 España
Coleccións
  • Investigación (ETSECCP) [826]
Metadatos
Mostrar o rexistro completo do ítem
Título
A decision-making tool for port operations based on downtime risk and met-ocean conditions including infragravity wave forecast
Autor(es)
Costas Gómez, Raquel
Carro Fidalgo, Humberto
Figuero, A.
Peña González, Enrique
Sande, José
Data
2023
Cita bibliográfica
Costas, R.; Carro, H.; Figuero, A.; Peña, E.; Sande, J. A Decision-Making Tool for Port Operations Based on Downtime Risk and Met-Ocean Conditions including Infragravity Wave Forecast. J. Mar. Sci. Eng. 2023, 11, 536. https://doi.org/10.3390/jmse11030536
Resumo
[Abstract:] Port downtime leads to economic losses and reductions in safety levels. This problem is generally assessed in terms of uni-variable thresholds, despite its multidimensional nature. The aim of the present study is to develop a downtime probability forecasting tool, based on real problems at the Outer Port of Punta Langosteira (Spain), and including infragravity wave prediction. The combination of measurements from three pressure sensors and a tide gauge, together with machine-learning techniques, made it possible to generate long wave prognostication at different frequencies. A fitting correlation of 0.95 and 0.9 and a root mean squared error (RMSE) of 0.022 m and 0.012 m were achieved for gravity and infragravity waves, respectively. A wave hindcast in the berthing areas, met-ocean forecast data, and information on 15 real operational problems between 2017 and 2022, were all used to build a classification model for downtime probability estimation. The proposed use of this tool addresses the problems that arise when two consecutive sea states have thresholds above 3.97%. This is the limit for guaranteeing the safety of port operations and has a cost of just 0.6 unnecessary interruptions of operations per year. The methodology is easily exportable to other facilities for an adequate assessment of downtime risks.
Palabras chave
Long waves prediction
Port operability
Multidimensional operational threshold
Machine learning
Port management
 
Versión do editor
https://doi.org/10.3390/jmse11030536
Dereitos
Atribución 3.0 España

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións