Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Boundary-safe PINNs extension: Application to non-linear parabolic PDEs in counterparty credit risk

Thumbnail
Ver/Abrir
PerezVillarino_Joel_2023_Boundary_safe_PINNs_extension_Application_non_linear.pdf (3.536Mb)
Use este enlace para citar
http://hdl.handle.net/2183/32780
Atribución-NoComercial-SinDerivadas  4.0 International (CC BY-NC-ND 4.0)
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 4.0 International (CC BY-NC-ND 4.0)
Colecciones
  • Investigación (FIC) [1685]
Metadatos
Mostrar el registro completo del ítem
Título
Boundary-safe PINNs extension: Application to non-linear parabolic PDEs in counterparty credit risk
Autor(es)
Pérez Villarino, Joel
Leitao, Álvaro
García Rodríguez, José Antonio
Fecha
2023
Cita bibliográfica
J. P. Villarino, Á. Leitao, & J.A. García Rodríguez, "Boundary-safe PINNs extension: Application to non-linear parabolic PDEs in counterparty credit risk", Journal of Computational and Applied Mathematics, 425, 2023 [Online] doi:10.1016/j.cam.2022.115041, Available: https://doi.org/10.1016/j.cam.2022.115041
Resumen
[Abstract]: The goal of this work is to develop a novel strategy for the treatment of the boundary conditions for multi-dimension nonlinear parabolic PDEs. The proposed methodology allows to get rid of the heuristic choice of the weights for the different addends that appear in the loss function related to the training process. It is based on defining the losses associated to the boundaries by means of the PDEs that arise from substituting the related conditions into the model equation itself. The approach is applied to challenging problems appearing in quantitative finance, namely, in counterparty credit risk management. Further, automatic differentiation is employed to obtain accurate approximation of the partial derivatives, the so called Greeks, that are very relevant quantities in the field.
Palabras clave
Boundary conditions
Couterparty credit risk
Deep learning
Nonlinear
PDEs
PINNs
 
Versión del editor
https://doi.org/10.1016/j.cam.2022.115041
Derechos
Atribución-NoComercial-SinDerivadas 4.0 International (CC BY-NC-ND 4.0)

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias