Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Ciencias
  • Investigación (FCIE)
  • View Item
  •   DSpace Home
  • Facultade de Ciencias
  • Investigación (FCIE)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards the Development of Sustainable Hybrid Materials to Achieve High Cr(VI) Removals in a One-Pot Process

Thumbnail
View/Open
GomezCarnota_David_2022_Towards_Development_Sustainable_Hybrid_Materials_Achieve_High_Cr(VI)_Removals_OnePot_Process.pdf (5.754Mb)
Use this link to cite
http://hdl.handle.net/2183/32541
Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional
Collections
  • Investigación (FCIE) [1228]
Metadata
Show full item record
Title
Towards the Development of Sustainable Hybrid Materials to Achieve High Cr(VI) Removals in a One-Pot Process
Author(s)
Gómez-Carnota, David
Barriada, José Luis
Herrero, Roberto
Date
2022-11-09
Citation
Gómez-Carnota, D.; Barriada, J.L.; Herrero, R. Towards the Development of Sustainable Hybrid Materials to Achieve High Cr(VI) Removals in a One-Pot Process. Nanomaterials 2022, 12, 3952. https://doi.org/10.3390/nano12223952
Abstract
[Abstract] Rising manufacturing costs resulting from the current global situation make it necessary to economize at all stages of production, including waste management. Cost-effective materials that reduce the release of pollutants into the environment are becoming mandatory. In this work, a sodium silicate polymeric material, functionalized with iron, was synthesized. The material contains iron-rich nanostructures on the surface, which are responsible for the decontamination process. The inorganic material was further treated with a reducing eucalyptus extract to improve its decontamination performance. Both the inorganic and hybrid materials were used for decontamination of Cr(VI), a widely emitted chemical waste product. The hybrid material provided the best results (1.7 g Cr(VI)·g−1 Fe) in a one-pot process combining reduction and adsorption. The Langmuir–Freundlich model and a statistical thermodynamics adsorption model, together with removal rates, were used to study the processes. High adsorption energies were found, especially in the adsorption of Fe(II) on the polymeric base (33.2 kJ∙mol−1). All materials were characterized using SEM, EDS and N2 sorption, TGA, and IR analyses. In conclusion, the hybrid material synthesized in this study is cheap and easy to produce through environmentally friendly synthesis, and it is a promising adsorbent for the prevention of pollution issues in effluent discharges.
Keywords
Hybrid materials
Nanostructures
Chromium
One-pot reaction
Reduction
Adsorption
Iron
 
Description
This article belongs to the Special Issue Nano-Adsorbents for the Removal of Heavy Metals and Dyes
Editor version
https://doi.org/10.3390/nano12223952
Rights
Atribución 4.0 Internacional
ISSN
2079-4991

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback