Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A hybrid one-class approach for detecting anomalies in industrial systems

Thumbnail
Ver/abrir
ZayasGato_Francisco_2022_Hybrid-one-class-approach-detecting-anomalies-industrial-systems.pdf (2.892Mb)
Use este enlace para citar
http://hdl.handle.net/2183/32333
Attribution 4.0 International (CC BY 4.0)
A non ser que se indique outra cousa, a licenza do ítem descríbese como Attribution 4.0 International (CC BY 4.0)
Coleccións
  • Investigación (EPEF) [590]
Metadatos
Mostrar o rexistro completo do ítem
Título
A hybrid one-class approach for detecting anomalies in industrial systems
Autor(es)
Zayas-Gato, Francisco
Jove, Esteban
Casteleiro-Roca, José-Luis
Quintián, Héctor
Piñon-Pazos, A.
Dragan, Simić
Calvo-Rolle, José Luis
Data
2022-03-08
Cita bibliográfica
Zayas-Gato, F., Jove, E., Casteleiro-Roca, J.-L., Quintián, H., Piñ on-Pazos, A., Simi c, D., & Calvo-Rolle, J. L. (2022). A hybrid one-class approach for detecting anomalies in industrial systems. Expert Systems, 39(9), e12990. https://doi.org/10.1111/exsy.12990
Resumo
[Abstract]: The significant advance of Internet of Things in industrial environments has provided the possibility of monitoring the different variables that come into play in an industrial process. This circumstance allows the supervision of the current state of an industrial plant and the consequent decision making possibilities. Then, the use of anomaly detection techniques are presented as a powerful tool to determine unexpected situations. The present research is based on the implementation of one-class classifiers to detect anomalies in two industrial systems. The proposal is validated using two real datasets registered during different operating points of two industrial plants. To ensure a better performance, a clustering process is developed prior the classifier implementation. Then, local classifiers are trained over each cluster, leading to successful results when they are tested with both real and artificial anomalies. Validation results present in all cases, AUC values above 90%.
Palabras chave
Anomaly detection
Clustering
Industrial system
One-class
Optimization
 
Descrición
Financiado para publicación en aberto: Universidade da Coruña/CISUG
Versión do editor
https://doi.org/10.1111/exsy.12990
Dereitos
Attribution 4.0 International (CC BY 4.0)
ISSN
1468-0394

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións