Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Ciencias da Saúde
  • Investigación (FCS)
  • View Item
  •   DSpace Home
  • Facultade de Ciencias da Saúde
  • Investigación (FCS)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synergistic effects of applying static magnetic fields and diazepam to improve EEG abnormalities in the pilocarpine epilepsy rat model

Thumbnail
View/Open
deLabra_Synergistic.pdf (2.286Mb)
Use this link to cite
http://hdl.handle.net/2183/32319
Creative Commons Attribution 4.0 International Licence (CC-BY 4.0)
Except where otherwise noted, this item's license is described as Creative Commons Attribution 4.0 International Licence (CC-BY 4.0)
Collections
  • Investigación (FCS) [1295]
Metadata
Show full item record
Title
Synergistic effects of applying static magnetic fields and diazepam to improve EEG abnormalities in the pilocarpine epilepsy rat model
Author(s)
Labra, Carmen de
Cudeiro, Javier
Rivadulla, Casto
Date
2023-01-05
Citation
de Labra C, Cudeiro J, Rivadulla C. Synergistic effects of applying static magnetic fields and diazepam to improve EEG abnormalities in the pilocarpine epilepsy rat model. Sci Rep. 2023 Jan 5;13(1):214.
Abstract
[Abstract] The lithium-pilocarpine rat model is a well-known model of temporal epilepsy. Recently we found that transcranial static magnetic stimulation (tSMS) delay and reduce the signs of EEG in this model. We aim to test the effect of combining the therapeutic action of tSMS and diazepam, a drug used to treat status epilepticus. We induce epilepsy in 12 Sprague-Dawley rats. Animals were classified as "magnet" when a magnetic neodymium cylinder was placed over the skull or "control" when a stainless-steel replica was used. Diazepam was injected 60-min after the second doses of pilocarpine injection. We found a reduction in the number of spikes/minute for magnet condition compared with sham condition, reaching significance at 60 min after diazepam injection. The Root-Mean-Square shown a significant reduction in magnet animals compared with those receiving diazepam (Tukey's-test 30 and 60 min after diazepam injection, p < 0.01; 40 and 50 min after diazepam injection, p < 0.05). Furthermore, the power spectrum analysis shown a reduction in delta, theta, alpha and beta bands, on the diazepam + magnet animals compared to the diazepam + sham group. Analysis of high-frequency oscillations revealed an increased in the ripples due to pilocarpine being reduced by diazepam. Our results demonstrate that application of tSMS previously to diazepam potentiates the effect of the drug by reducing the electroencephalographic pattern associated with epileptiform discharges. We suggest a new synergistic cooperation between pharmacology and neuromodulation as a future treatment for epilepsy.
Editor version
https://doi.org/10.1038/s41598-022-26870-z
Rights
Creative Commons Attribution 4.0 International Licence (CC-BY 4.0)
ISSN
2045-2322

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback