Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Compact and indexed representation for LiDAR point clouds

Thumbnail
Ver/abrir
Ladra_Susana_2022_Compact_indexed_representation_for_LiDAR_point_clouds.pdf (46.90Mb)
Use este enlace para citar
http://hdl.handle.net/2183/32253
Atribución 4.0 Internacional (CC BY 4.0)
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0 Internacional (CC BY 4.0)
Coleccións
  • Investigación (FIC) [1679]
Metadatos
Mostrar o rexistro completo do ítem
Título
Compact and indexed representation for LiDAR point clouds
Autor(es)
Ladra, Susana
Rodríguez Luaces, Miguel
Paramá, José R.
Silva-Coira, Fernando
Data
2022
Cita bibliográfica
Susana Ladra, Miguel R. Luaces, José R. Paramá & Fernando Silva-Coira (2022): Compact and indexed representation for LiDAR point clouds, Geo-spatial Information Science, DOI: 10.1080/10095020.2022.2121664
Resumo
[Abstract]: LiDAR devices are capable of acquiring clouds of 3D points reflecting any object around them, and adding additional attributes to each point such as color, position, time, etc. LiDAR datasets are usually large, and compressed data formats (e.g. LAZ) have been proposed over the years. These formats are capable of transparently decompressing portions of the data, but they are not focused on solving general queries over the data. In contrast to that traditional approach, a new recent research line focuses on designing data structures that combine compression and indexation, allowing directly querying the compressed data. Compression is used to fit the data structure in main memory all the time, thus getting rid of disk accesses, and indexation is used to query the compressed data as fast as querying the uncompressed data. In this paper, we present the first data structure capable of losslessly compressing point clouds that have attributes and jointly indexing all three dimensions of space and attribute values. Our method is able to run range queries and attribute queries up to 100 times faster than previous methods.
Palabras chave
3D point clouds
Lossless compression
Indexing
 
Versión do editor
https://doi.org/10.1080/10095020.2022.2121664
Dereitos
Atribución 4.0 Internacional (CC BY 4.0)

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións