Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • Ver ítem
  •   RUC
  • Escola Técnica Superior de Enxeñaría de Camiños, Canais e Portos
  • Investigación (ETSECCP)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Estimation of flood-exposed population in data-scarce regions combining satellite imagery and high resolution hydrological-hydraulic modelling: A case study in the Licungo basin (Mozambique)

Thumbnail
Ver/Abrir
CeaL_2022_JoHRS-44-101247.pdf (15.22Mb)
Use este enlace para citar
http://hdl.handle.net/2183/32220
Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España
Colecciones
  • Investigación (ETSECCP) [826]
Metadatos
Mostrar el registro completo del ítem
Título
Estimation of flood-exposed population in data-scarce regions combining satellite imagery and high resolution hydrological-hydraulic modelling: A case study in the Licungo basin (Mozambique)
Autor(es)
Cea, Luis
Álvarez, Manuel
Puertas, Jerónimo
Fecha
2022
Cita bibliográfica
Cea, L., Álvarez, M., Puertas, J. (2022). Estimation of flood-exposed population in data-scarce regions combining satellite imagery and high resolution hydrological-hydraulic modelling: A case study in the Licungo basin (Mozambique). Journal of Hydrology: Regional Studies, 44, 101247.
Resumen
[Abstract:] Study Region Licungo basin (Mozambique) Study Focus The Licungo basin (23,263 km2) suffers frequent severe flooding due to tropical storms, in a country that is among the world’s most vulnerable in terms of exposure to weather-related hazards and climate change. We propose a methodology for the estimation of the population exposed to flooding at the catchment scale in data-scarce regions, combining satellite imagery with integrated high-resolution hydrological-hydraulic modelling. All the input data needed are retrieved from freely-available global satellite products. The numerical model is also freeware. The methodology is therefore replicable worldwide. An estimate of the flood extent and exposed population during Tropical Storm Ana (January 2022) is presented as a case study. New Hydrological Insights for the Region Current freely-available satellite products in combination with high-resolution hydrological-hydraulic models can be used to estimate the population exposed to flooding in the whole catchment. This estimate is more realistic than the one obtained using satellite imagery alone, since satellite images are very rarely taken at the time of maximum flooding. Using the proposed methodology, we estimate that over 273,000 people (out of 1.5 million) were exposed to flooding in the Licungo basin during Tropical Storm Ana. This represents 18% of the basin population and is 8 times larger than the estimate obtained using only the available satellite images.
Palabras clave
Tropical storms
Flood hazard
Global digital elevation models
Sentinel-1 imagery
Iber model
Data-scarce regions
 
Descripción
Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG
Versión del editor
https://doi.org/10.1016/j.ejrh.2022.101247
Derechos
Atribución-NoComercial-SinDerivadas 3.0 España

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias