Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • View Item
  •   DSpace Home
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gaining deep knowledge of Android malware families through dimensionality reduction techniques

Thumbnail
View/Open
2019_Vega-Vega_Gaining_Deep_Knowledge.pdf (1.955Mb)
Use this link to cite
http://hdl.handle.net/2183/31878
Collections
  • Investigación (EPEF) [594]
Metadata
Show full item record
Title
Gaining deep knowledge of Android malware families through dimensionality reduction techniques
Author(s)
Vega-Vega, Rafael A.
Quintián, Héctor
Calvo-Rolle, José Luis
Herrero, Alvaro
Corchado, Emilio
Date
2019-04
Citation
Rafael Vega Vega, Héctor Quintián, José Luís Calvo-Rolle, Álvaro Herrero, Emilio Corchado, Gaining deep knowledge of Android malware families through dimensionality reduction techniques, Logic Journal of the IGPL, Volume 27, Issue 2, April 2019, Pages 160–176, https://doi.org/10.1093/jigpal/jzy030
Abstract
[Abstract] This research proposes the analysis and subsequent characterisation of Android malware families by means of low dimensional visualisations using dimensional reduction techniques. The well-known Malgenome data set, coming from the Android Malware Genome Project, has been thoroughly analysed through the following six dimensionality reduction techniques: Principal Component Analysis, Maximum Likelihood Hebbian Learning, Cooperative Maximum Likelihood Hebbian Learning, Curvilinear Component Analysis, Isomap and Self Organizing Map. Results obtained enable a clear visual analysis of the structure of this high-dimensionality data set, letting us gain deep knowledge about the nature of such Android malware families. Interesting conclusions are obtained from the real-life data set under analysis.
Keywords
Android malware
Malware families
Dimensionality reduction
Artificial neural networks
 
Editor version
https://doi.org/10.1093/jigpal/jzy030
Rights
This is a pre-copyedited, author-produced version of an article accepted for publication in Logic Journal of the IGPL following peer review. The version of record: Rafael Vega Vega, Héctor Quintián, José Luís Calvo-Rolle, Álvaro Herrero, Emilio Corchado, Gaining deep knowledge of Android malware families through dimensionality reduction techniques, Logic Journal of the IGPL, Volume 27, Issue 2, April 2019, Pages 160–176, is available online at: https://doi.org/10.1093/jigpal/jzy030
ISSN
1368-9894

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback