Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Non-IID data and Continual Learning processes in Federated Learning: A long road ahead

Thumbnail
View/Open
Criado_Marcos_2022_Non_IID_data_federated_learning.pdf (1.974Mb)
Use this link to cite
http://hdl.handle.net/2183/31818
Atribución 3.0 España
Except where otherwise noted, this item's license is described as Atribución 3.0 España
Collections
  • Investigación (FIC) [1685]
Metadata
Show full item record
Title
Non-IID data and Continual Learning processes in Federated Learning: A long road ahead
Author(s)
Criado, Marcos F.
Casado, Fernando E.
Iglesias Rodríguez, Roberto
Regueiro, Carlos V.
Barro, Senén
Date
2022
Citation
M. F. Criado, F. E. Casado, R. Iglesias, C. V. Regueiro, y S. Barro, «Non-IID data and Continual Learning processes in Federated Learning: A long road ahead», Information Fusion, vol. 88, pp. 263-280, dic. 2022, doi: 10.1016/j.inffus.2022.07.024.
Abstract
[Abstract] Federated Learning is a novel framework that allows multiple devices or institutions to train a machine learning model collaboratively while preserving their data private. This decentralized approach is prone to suffer the consequences of data statistical heterogeneity, both across the different entities and over time, which may lead to a lack of convergence. To avoid such issues, different methods have been proposed in the past few years. However, data may be heterogeneous in lots of different ways, and current proposals do not always determine the kind of heterogeneity they are considering. In this work, we formally classify data statistical heterogeneity and review the most remarkable learning Federated Learning strategies that are able to face it. At the same time, we introduce approaches from other machine learning frameworks. In particular, Continual Learning strategies are worthy of special attention, since they are able to handle habitual kinds of data heterogeneity. Throughout this paper, we present many methods that could be easily adapted to the Federated Learning settings to improve its performance. Apart from theoretically discussing the negative impact of data heterogeneity, we examine it and show some empirical results using different types of non-IID data.
Keywords
Federated learning
Data heterogeneity
Non-IID data
Concept drift
Distributed learning
Continual learning
 
Editor version
https://doi.org/10.1016/j.inffus.2022.07.024
Rights
Atribución 3.0 España
ISSN
1566-2535

Related items

Showing items related by title, author, creator and subject.

  • Enfoques de Aprendizaje en estudiantes de universidad : la escala bifactorial CEPE-U2F 

    Barca-Lozano, Alfonso; Peralbo, Manuel; Brenlla-Blanco, Juan-Carlos; Barca Enríquez, Eduardo (Universidade da Coruña, Servizo de Publicacións, 2019)
    [Resumen] Este trabajo tiene por finalidad la elaboración de la Escala abreviada de evaluación de enfoques de aprendizaje a partir de la Escala original de John Biggs (SPQ-Study Process Questionnaire) con una muestra de ...
  • Ecologías de aprendizaje en la Era digital: desafíos para la educación superior 

    González-Sanmamed, Mercedes; Sangrà, Albert; Souto-Seijo, Alba; Estévez, Iris (Universidad de Granada, 2018-04-12)
    [Resumen] La inmersión de la sociedad en la era digital ha influido de manera decisiva en las formas de comportarse de las personas, en el ámbito del trabajo, de la economía, del entretenimiento y de la enseñanza. La ...
  • Una integración a sistemas de gestión de aprendizaje en estándares de un sistema barra-bola 

    Montoro, Alicia; Ruano Ruano, Ildefonso; Estévez, Elisabet; Gómez Ortega, Juan; Gámez García, Javier (Universidade da Coruña, Servizo de Publicacións, 2021)
    [Resumen] Los laboratorios de tipo online tienen cada vez más aceptación dentro de la educación universitaria relacionada con las ciencias, tecnologías, ingenierías y matemáticas (CTIM o STEM en inglés), donde el trabajo ...

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback