Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A One-Class Classification method based on Expanded Non-Convex Hulls

Thumbnail
Ver/Abrir
NovoaParadela_David_2023_One_Class_Classifcation.pdf (4.133Mb)
Use este enlace para citar
http://hdl.handle.net/2183/31809
Atribución-NoComercial-SinDerivadas 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 3.0 España
Colecciones
  • Investigación (FIC) [1683]
Metadatos
Mostrar el registro completo del ítem
Título
A One-Class Classification method based on Expanded Non-Convex Hulls
Autor(es)
Novoa-Paradela, David
Fontenla-Romero, Óscar
Guijarro-Berdiñas, Bertha
Fecha
2023
Cita bibliográfica
D. Novoa-Paradela, O. Fontenla-Romero, y B. Guijarro-Berdiñas, «A One-Class Classification method based on Expanded Non-Convex Hulls», Information Fusion, vol. 89, pp. 1-15, ene. 2023, doi: 10.1016/j.inffus.2022.07.023.
Resumen
[Abstract]: This paper presents an intuitive, robust and efficient One-Class Classification algorithm. The method developed is called OCENCH (One-class Classification via Expanded Non-Convex Hulls) and bases its operation on the construction of subdivisible and expandable non-convex hulls to represent the target class. The method begins by reducing the dimensionality of the data to two-dimensional spaces using random projections. After that, an iterative process based on Delaunay triangulations is applied to these spaces to obtain simple polygons that characterizes the non-convex shape of the normal class data. In addition, the method subdivides the non-convex hulls to represent separate regions in space if necessary. The method has been evaluated and compared to several main algorithms of the field using real data sets. In contrast to other methods, OCENCH can deal with non-convex and disjointed shapes. Finally, its execution can be carried out in a parallel way, which is interesting to reduce the execution time.
Palabras clave
Machine learning
One-class classification
Convex hull
Delaunay triangulation
Random projections
Ensemble learning
 
Versión del editor
https://doi.org/10.1016/j.inffus.2022.07.023
Derechos
Atribución-NoComercial-SinDerivadas 3.0 España
ISSN
1566-2535

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias