Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A One-Class Classification method based on Expanded Non-Convex Hulls

Thumbnail
View/Open
NovoaParadela_David_2023_One_Class_Classifcation.pdf (4.133Mb)
Use this link to cite
http://hdl.handle.net/2183/31809
Atribución-NoComercial-SinDerivadas 3.0 España
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 3.0 España
Collections
  • Investigación (FIC) [1679]
Metadata
Show full item record
Title
A One-Class Classification method based on Expanded Non-Convex Hulls
Author(s)
Novoa-Paradela, David
Fontenla-Romero, Óscar
Guijarro-Berdiñas, Bertha
Date
2023
Citation
D. Novoa-Paradela, O. Fontenla-Romero, y B. Guijarro-Berdiñas, «A One-Class Classification method based on Expanded Non-Convex Hulls», Information Fusion, vol. 89, pp. 1-15, ene. 2023, doi: 10.1016/j.inffus.2022.07.023.
Abstract
[Abstract]: This paper presents an intuitive, robust and efficient One-Class Classification algorithm. The method developed is called OCENCH (One-class Classification via Expanded Non-Convex Hulls) and bases its operation on the construction of subdivisible and expandable non-convex hulls to represent the target class. The method begins by reducing the dimensionality of the data to two-dimensional spaces using random projections. After that, an iterative process based on Delaunay triangulations is applied to these spaces to obtain simple polygons that characterizes the non-convex shape of the normal class data. In addition, the method subdivides the non-convex hulls to represent separate regions in space if necessary. The method has been evaluated and compared to several main algorithms of the field using real data sets. In contrast to other methods, OCENCH can deal with non-convex and disjointed shapes. Finally, its execution can be carried out in a parallel way, which is interesting to reduce the execution time.
Keywords
Machine learning
One-class classification
Convex hull
Delaunay triangulation
Random projections
Ensemble learning
 
Editor version
https://doi.org/10.1016/j.inffus.2022.07.023
Rights
Atribución-NoComercial-SinDerivadas 3.0 España
ISSN
1566-2535

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback