Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
  •   RUC
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimization of a nature-inspired shape for a vertical axis wind turbine through a numerical model and an artificial neural network

Thumbnail
Ver/Abrir
BlancoDamota_Javier_2022_Optimization-nature-inspired-shape-vertical-axis-wind-turbine-numerical-model-artificial-neural-network.pdf (5.682Mb)
Use este enlace para citar
http://hdl.handle.net/2183/31773
Attribution 4.0 International
Excepto si se señala otra cosa, la licencia del ítem se describe como Attribution 4.0 International
Colecciones
  • Investigación (EPEF) [592]
Metadatos
Mostrar el registro completo del ítem
Título
Optimization of a nature-inspired shape for a vertical axis wind turbine through a numerical model and an artificial neural network
Autor(es)
Blanco Damota, Javier
Rodríguez-García, JuanDeDios
Couce-Casanova, Antonio
Telmo Miranda, Javier
Caccia, Claudio Giovanni
Lamas, M.I.
Fecha
2022-08-11
Cita bibliográfica
BlancoDamota,J.; RodríguezGarcía,J.d.D.;Couce Casanova,A.;Telmo Miranda,J.; Caccia,C.G.;LamasGaldo, M.I. OptimizationofaNature-Inspired ShapeforaVerticalAxis Wind TurbinethroughaNumerical Model andanArtificialNeuralNetwork. Appl.Sci.2022,12,8037. https:// doi.org/10.3390/app12168037
Resumen
[Abstract] The present work proposes an artificial neural network (ANN) to analyze vertical axis wind turbines of the Savonius type. These turbines are appropriate for low wind velocities due to their low starting torque. Nevertheless, their efficiency is too low. In order to improve the efficiency, several modifications are analyzed. First of all, an innovative blade profile biologically inspired is proposed. After that, the influence of several parameters such as the aspect ratio, overlap, and twist angle was analyzed through a CFD (computational fluid dynamics) model. In order to characterize the most appropriate combination of aspect ratio, overlap, and twist angle, an artificial neural network is proposed. A data set containing 125 data points was obtained through CFD. This data set was used to develop the artificial neural network. Once established, the artificial neural network was employed to analyze 793,881 combinations of different aspect ratios, overlaps, and twist angles. It was found that the maximum power coefficient, 0.3263, corresponds to aspect ratio 7.5, overlap/chord length ratio 0.1125, and twist angle 112. This corresponds to a 32.4% increment in comparison to the original case analyzed with aspect ratio 1, overlap 0, and twist angle 0.
Palabras clave
Wind turbines
VAWT
CFD
Savonius
Fibonacci
ANN
 
Versión del editor
https://doi.org/10.3390/app12168037
Derechos
Attribution 4.0 International
ISSN
2076-3417

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias