Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • View Item
  •   DSpace Home
  • Escola Politécnica de Enxeñaría de Ferrol
  • Investigación (EPEF)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intelligent Model for Power Cells State of Charge Forecasting in EV

Thumbnail
View/Open
Lopez_Victor_2022_Intelligent_model_for_power_cells_state_of_charge_forecasting_in_EV.pdf (1.586Mb)
Use this link to cite
http://hdl.handle.net/2183/31763
Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/
Collections
  • Investigación (EPEF) [590]
Metadata
Show full item record
Title
Intelligent Model for Power Cells State of Charge Forecasting in EV
Author(s)
López, Víctor
Jove, Esteban
Zayas-Gato, Francisco
Pinto-Santos, Francisco
Piñón-Pazos, A.
Casteleiro-Roca, José-Luis
Quintián, Héctor
Calvo-Rolle, José Luis
Date
2022-07-19
Citation
López, V.; Jove, E.; Zayas Gato, F.; Pinto-Santos, F.; Piñón-Pazos, A.J.; Casteleiro-Roca, J.-L.; Quintian, H.; Calvo-Rolle, J.L. Intelligent Model for Power Cells State of Charge Forecasting in EV. Processes 2022, 10, 1406. https://doi.org/10.3390/pr10071406
Abstract
[Abstract] In electric vehicles and mobile electronic devices, batteries are one of the most critical components. They work by using electrochemical reactions that have been thoroughly investigated to identify their behavior and characteristics at each operating point. One of the fascinating aspects of batteries is their complicated behavior. The type of power cell reviewed in this study is a Lithium Iron Phosphate LiFePO4 (LFP). The goal of this study is to develop an intelligent model that can forecast the power cell State of Charge (SOC). The dataset used to create the model comprises all the operating points measured from an actual system during a capacity confirmation test. Regression approaches based on Deep Learning (DL), such as Long Short-Term Memory networks (LSTM), were evaluated under different model configurations and forecasting horizons.
Keywords
LSTM
Forecasting
Battery
 
Editor version
https://doi.org/10.3390/pr10071406
Rights
Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0/
ISSN
2227-9717

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback