Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • Ver ítem
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improving handgun detectors with human pose classification

Thumbnail
Ver/abrir
2022_Ruiz-Santaquiteria_Jesus_Improving_handgun_detectors_with_human_pose_classification.pdf (4.802Mb)
Use este enlace para citar
http://hdl.handle.net/2183/31432
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Coleccións
  • Jornadas de Automática (43ª. 2022. Logroño) [143]
Metadatos
Mostrar o rexistro completo do ítem
Título
Improving handgun detectors with human pose classification
Autor(es)
Ruiz-Santaquiteria Alegre, Jesus
Deniz, Óscar
Vallez, Noelia
Velasco Mata, Alberto
Bueno, Gloria
Data
2022
Cita bibliográfica
Ruiz-Santaquiteria, J., Deniz, O., Vallez, N., Velasco-Mata, A., Bueno, G. (2022) Improving handgun detectors with human pose classification. XLIII Jornadas de Automática: libro de actas, pp.1040-1047 https://doi.org/10.17979/spudc.9788497498418.1040
Resumo
[Abstract] Unfortunately, attacks with firearms such as handguns have become too common. CCTV surveillance systems can potentially help to prevent this kind of incidents, but require continuous human supervision, which is not feasible in practice. Image-based handgun detectors allow the automatic location of these weapons to send alerts to the security staff. Deep learning has been recently used for this purpose. However, the precision and sensitivity of these systems are not generally satisfactory, causing in most cases both false alarms and undetected handguns, particularly when the firearm is far from the camera. This paper proposes the use of information related to the pose of the subject to improve the performance of current handgun detectors. More concretely, a human full-body pose classifier has been developed which is capable of separating between shooting poses and other non-dangerous poses. The classified pose is then used to reduce both the number of false positives (FP) and false negatives (FN). The proposed method has been tested with several datasets and handgun detectors, showing an improvement under various metrics.
Palabras chave
Handgun detection
Human pose classification
Deep learning
CCTV surveillance
Human pose estimation
 
Versión do editor
https://doi.org/10.17979/spudc.9788497498418.1040
Dereitos
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
ISBN
978-84-9749-841-8

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións