Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • View Item
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Improving handgun detectors with human pose classification

Thumbnail
View/Open
2022_Ruiz-Santaquiteria_Jesus_Improving_handgun_detectors_with_human_pose_classification.pdf (4.802Mb)
Use this link to cite
http://hdl.handle.net/2183/31432
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Collections
  • Jornadas de Automática (43ª. 2022. Logroño) [143]
Metadata
Show full item record
Title
Improving handgun detectors with human pose classification
Author(s)
Ruiz-Santaquiteria Alegre, Jesus
Deniz, Óscar
Vallez, Noelia
Velasco Mata, Alberto
Bueno, Gloria
Date
2022
Citation
Ruiz-Santaquiteria, J., Deniz, O., Vallez, N., Velasco-Mata, A., Bueno, G. (2022) Improving handgun detectors with human pose classification. XLIII Jornadas de Automática: libro de actas, pp.1040-1047 https://doi.org/10.17979/spudc.9788497498418.1040
Abstract
[Abstract] Unfortunately, attacks with firearms such as handguns have become too common. CCTV surveillance systems can potentially help to prevent this kind of incidents, but require continuous human supervision, which is not feasible in practice. Image-based handgun detectors allow the automatic location of these weapons to send alerts to the security staff. Deep learning has been recently used for this purpose. However, the precision and sensitivity of these systems are not generally satisfactory, causing in most cases both false alarms and undetected handguns, particularly when the firearm is far from the camera. This paper proposes the use of information related to the pose of the subject to improve the performance of current handgun detectors. More concretely, a human full-body pose classifier has been developed which is capable of separating between shooting poses and other non-dangerous poses. The classified pose is then used to reduce both the number of false positives (FP) and false negatives (FN). The proposed method has been tested with several datasets and handgun detectors, showing an improvement under various metrics.
Keywords
Handgun detection
Human pose classification
Deep learning
CCTV surveillance
Human pose estimation
 
Editor version
https://doi.org/10.17979/spudc.9788497498418.1040
Rights
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
ISBN
978-84-9749-841-8

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback