Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • Ver ítem
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Segmentación en imagen de frutos de granado usando deep learning con aplicación en agricultura de precisión

Thumbnail
Ver/abrir
2022_Gimenez-Gallego_Jaime_Segmentacion_en_imagen_de_frutos_de_granado.pdf (866.7Kb)
Use este enlace para citar
http://hdl.handle.net/2183/31420
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Coleccións
  • Jornadas de Automática (43ª. 2022. Logroño) [143]
Metadatos
Mostrar o rexistro completo do ítem
Título
Segmentación en imagen de frutos de granado usando deep learning con aplicación en agricultura de precisión
Título(s) alternativo(s)
Image segmentation of pomegranate fruits using deep learning with application in precision agriculture
Autor(es)
Giménez-Gallego, Jaime
González-Teruel, Juan D.
Toledo, Ana
Jiménez Buendía, Manuel
Soto-Valles, Fulgencio
Torres-Sánchez, Roque
Data
2022
Cita bibliográfica
Giménez-Gallego, J., González-Teruel, J.D., Toledo-Moreo, A. B., Jiménez-Buendía, M., Soto-Valles, F., Torres-Sánchez, R. (2022) Segmentación en imagen de frutos de granado usando deep learning con aplicación en agricultura de precisión. XLIII Jornadas de Automática: libro de actas, pp.1001-1006 https://doi.org/10.17979/spudc.9788497498418.1001
Resumo
[Resumen] En agricultura de precisión, para monitorizar el estado del cultivo mediante imagen de forma automática, son necesarias herramientas de procesamiento para poder extraer la información de interés. En este estudio se desarrolla un modelo de Deep Learning para segmentación de imagen con el objetivo de discriminar los frutos del granado. Se alcanzan unos resultados de Intersection over Union (IoU)=0,71 y mean Average Precision (mAP)=0,82. Posteriormente, se expone un algoritmo que permite estimar el tamaño del fruto en píxeles, con un error relativo medio del 5,4%.
 
[Abstract] In precision agriculture, to automatically monitor the state of the crop using images, processing tools are needed to extract the information of interest. In this study, a Deep Learning model is developed for image segmentation to discriminate pomegranate fruits. Results of Intersection over Union (IoU)=0.71 and mean Average Precision (mAP)=0.82 are achieved. Subsequently, an algorithm for estimating the size of the fruit in pixels is presented, with an average relative error of 5.4%.
 
Palabras chave
Agricultura de precisión
Visión por computador
Deep learning
Segmentación de imagen
Precision agriculture
Computer vision
Deep learning
Image segmentation
 
Versión do editor
https://doi.org/10.17979/spudc.9788497498418.1001
Dereitos
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
ISBN
978-84-9749-841-8

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións