Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • Ver ítem
  •   RUC
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessment of age estimation methods for forensic applications using non-occluded and synthetic occluded facial images

Thumbnail
Ver/Abrir
2022_Jeuland_Elouan_Assessment_of_age_estimation_methods_for_forensic_applications.pdf (716.4Kb)
Use este enlace para citar
http://hdl.handle.net/2183/31412
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Colecciones
  • Jornadas de Automática (43ª. 2022. Logroño) [143]
Metadatos
Mostrar el registro completo del ítem
Título
Assessment of age estimation methods for forensic applications using non-occluded and synthetic occluded facial images
Autor(es)
Jeuland, Elouan Derenee
Del Río Ferreras, Aitor
Chaves, Deisy
Fidalgo, Eduardo
González-Castro, Víctor
Alegre, Enrique
Fecha
2022
Cita bibliográfica
Jeuland, E.D., Del Río Ferreras, A., Chaves, D., Fidalgo, E., González-Castro, Alegre, E. (2022) Assessment of age estimation methods for forensic applications using non-occluded and synthetic occluded facial images. XLIII Jornadas de Automática: libro de actas, pp.972-979 https://doi.org/10.17979/spudc.9788497498418.0972
Resumen
[Abstract] Age estimation is a valuable forensic tool for criminal investigators since it helps to identify minors or possible offenders in Child Sexual Exploitation Materials (CSEM). Nowadays, Deep Learning methods are considered state-of-the-art for general age estimation. However, they have low performance in predicting the age of minors and older adults because of the few examples of these age groups in the existing datasets. Moreover, facial occlusion is used by offenders in certain CSEM, trying to hide the identity of the victims, which may also affect the performance of age estimators. In this work, we assess the performance of six deep-learning-based age estimators on non-occluded and occluded facial images. We selected FG-Net and APPA-REAL datasets to evaluate the models under non-occluded conditions. To assess the models under occluded conditions, we created synthetically occluded versions of the non-occluded datasets by drawing eye and mouth black masks to simulate the conditions observed in some CSEM images. Experimental results showed that the evaluated age estimators are affected more by eye occlusion than by mouth occlusion. Also, facial occlusion affects more the accuracy of the age estimation of minors and the elderly compared to other age groups. We expect that this study could become an initial benchmark for age estimation under non-occluded and occluded conditions, especially for forensic applications like victim profiling on CSEM where age estimation is essential.
Palabras clave
Age estimation
Deep learning
Facial occlusion
CSEM
 
Versión del editor
https://doi.org/10.17979/spudc.9788497498418.0972
Derechos
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
ISBN
978-84-9749-841-8

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias