Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • View Item
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (43ª. 2022. Logroño)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessment of age estimation methods for forensic applications using non-occluded and synthetic occluded facial images

Thumbnail
View/Open
2022_Jeuland_Elouan_Assessment_of_age_estimation_methods_for_forensic_applications.pdf (716.4Kb)
Use this link to cite
http://hdl.handle.net/2183/31412
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)
https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
Collections
  • Jornadas de Automática (43ª. 2022. Logroño) [143]
Metadata
Show full item record
Title
Assessment of age estimation methods for forensic applications using non-occluded and synthetic occluded facial images
Author(s)
Jeuland, Elouan Derenee
Del Río Ferreras, Aitor
Chaves, Deisy
Fidalgo, Eduardo
González-Castro, Víctor
Alegre, Enrique
Date
2022
Citation
Jeuland, E.D., Del Río Ferreras, A., Chaves, D., Fidalgo, E., González-Castro, Alegre, E. (2022) Assessment of age estimation methods for forensic applications using non-occluded and synthetic occluded facial images. XLIII Jornadas de Automática: libro de actas, pp.972-979 https://doi.org/10.17979/spudc.9788497498418.0972
Abstract
[Abstract] Age estimation is a valuable forensic tool for criminal investigators since it helps to identify minors or possible offenders in Child Sexual Exploitation Materials (CSEM). Nowadays, Deep Learning methods are considered state-of-the-art for general age estimation. However, they have low performance in predicting the age of minors and older adults because of the few examples of these age groups in the existing datasets. Moreover, facial occlusion is used by offenders in certain CSEM, trying to hide the identity of the victims, which may also affect the performance of age estimators. In this work, we assess the performance of six deep-learning-based age estimators on non-occluded and occluded facial images. We selected FG-Net and APPA-REAL datasets to evaluate the models under non-occluded conditions. To assess the models under occluded conditions, we created synthetically occluded versions of the non-occluded datasets by drawing eye and mouth black masks to simulate the conditions observed in some CSEM images. Experimental results showed that the evaluated age estimators are affected more by eye occlusion than by mouth occlusion. Also, facial occlusion affects more the accuracy of the age estimation of minors and the elderly compared to other age groups. We expect that this study could become an initial benchmark for age estimation under non-occluded and occluded conditions, especially for forensic applications like victim profiling on CSEM where age estimation is essential.
Keywords
Age estimation
Deep learning
Facial occlusion
CSEM
 
Editor version
https://doi.org/10.17979/spudc.9788497498418.0972
Rights
Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0) https://creativecommons.org/licenses/by-nc-sa/4.0/deed.es
ISBN
978-84-9749-841-8

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback