Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A classification and review of tools for developing and interacting with machine learning systems

Thumbnail
Ver/abrir
Hernandez_Pereira_Elena_2022_A_Classification_And_Review.pdf (1.258Mb)
Use este enlace para citar
http://hdl.handle.net/2183/31187
Atribución 3.0 España
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 3.0 España
Coleccións
  • Investigación (FIC) [1678]
Metadatos
Mostrar o rexistro completo do ítem
Título
A classification and review of tools for developing and interacting with machine learning systems
Autor(es)
Mosqueira-Rey, Eduardo
Hernández-Pereira, Elena
Alonso Ríos, David
Bobes-Bascarán, José
Data
2022
Cita bibliográfica
Eduardo Mosqueira-Rey, Elena Hernández Pereira, David Alonso-Ríos, and José Bobes-Bascarán. 2022. A classification and review of tools for developing and interacting with machine learning systems. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing (SAC '22). Association for Computing Machinery, New York, NY, USA, 1092–1101. https://doi.org/10.1145/3477314.3507310
Resumo
[Abstract] In this paper we aim to bring some order to the myriad of tools that have emerged in the field of Artificial Intelligence (AI), focusing on the field of Machine Learning (ML). For this purpose, we suggest a classification of the tools in which the categories are organized following the development lifecycle of an ML system and we make a review of the existing tools within each section of the classification. We believe this will help to better understand the ecosystem of tools currently available and will also allow us to identify niches in which to develop new tools to aid in the development of AI and ML systems. After reviewing the state-of-the-art of the tools, we have identified three trends in them: the incorporation of humans into the loop of the machine learning process, the movement from ad-hoc and experimental approaches to a more engineering perspective and the ability to make it easier to develop intelligent systems for people without an educational background in the area, in order to move the focus from the technical environment to the domain-specific problem.
Palabras chave
Artificial intelligence
Machine learning
Tools
 
Versión do editor
https://doi.org/10.1145/3477314.3507310
Dereitos
Atribución 3.0 España

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións