Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A classification and review of tools for developing and interacting with machine learning systems

Thumbnail
Ver/Abrir
Hernandez_Pereira_Elena_2022_A_Classification_And_Review.pdf (1.258Mb)
Use este enlace para citar
http://hdl.handle.net/2183/31187
Atribución 3.0 España
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 3.0 España
Colecciones
  • Investigación (FIC) [1678]
Metadatos
Mostrar el registro completo del ítem
Título
A classification and review of tools for developing and interacting with machine learning systems
Autor(es)
Mosqueira-Rey, Eduardo
Hernández-Pereira, Elena
Alonso Ríos, David
Bobes-Bascarán, José
Fecha
2022
Cita bibliográfica
Eduardo Mosqueira-Rey, Elena Hernández Pereira, David Alonso-Ríos, and José Bobes-Bascarán. 2022. A classification and review of tools for developing and interacting with machine learning systems. In Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing (SAC '22). Association for Computing Machinery, New York, NY, USA, 1092–1101. https://doi.org/10.1145/3477314.3507310
Resumen
[Abstract] In this paper we aim to bring some order to the myriad of tools that have emerged in the field of Artificial Intelligence (AI), focusing on the field of Machine Learning (ML). For this purpose, we suggest a classification of the tools in which the categories are organized following the development lifecycle of an ML system and we make a review of the existing tools within each section of the classification. We believe this will help to better understand the ecosystem of tools currently available and will also allow us to identify niches in which to develop new tools to aid in the development of AI and ML systems. After reviewing the state-of-the-art of the tools, we have identified three trends in them: the incorporation of humans into the loop of the machine learning process, the movement from ad-hoc and experimental approaches to a more engineering perspective and the ability to make it easier to develop intelligent systems for people without an educational background in the area, in order to move the focus from the technical environment to the domain-specific problem.
Palabras clave
Artificial intelligence
Machine learning
Tools
 
Versión del editor
https://doi.org/10.1145/3477314.3507310
Derechos
Atribución 3.0 España

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias