Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Experimental Analysis of the Relevance of Features and Effects on Gender Classification Models for Social Media Author Profiling

Thumbnail
Ver/Abrir
Perez_Abadin_Piot_2021_Experimental_Analysis.pdf (416.4Kb)
Use este enlace para citar
http://hdl.handle.net/2183/31181
Colecciones
  • Investigación (FIC) [1679]
Metadatos
Mostrar el registro completo del ítem
Título
Experimental Analysis of the Relevance of Features and Effects on Gender Classification Models for Social Media Author Profiling
Autor(es)
Piot, Paloma
Martín-Rodilla, Patricia
Parapar, Javier
Fecha
2021
Cita bibliográfica
PIOT-PEREZ-ABADIN, Paloma; MARTÍN-RODILLA, Patricia; PARAPAR, Javier. Experimental Analysis of the Relevance of Features and Effects on Gender Classification Models for Social Media Author Profiling. En ENASE. 2021. p. 103-113.
Resumen
[Abstract] Automatic user profiling from social networks has become a popular task due to its commercial applications (targeted advertising, market studies...). Automatic profiling models infer demographic characteristics of social network users from their generated content or interactions. Users’ demographic information is also precious for more social worrying tasks such as automatic early detection of mental disorders. For this type of users’ analysis tasks, it has been shown that the way how they use language is an important indicator which contributes to the effectiveness of the models. Therefore, we also consider that for identifying aspects such as gender, age or user’s origin, it is interesting to consider the use of the language both from psycho-linguistic and semantic features. A good selection of features will be vital for the performance of retrieval, classification, and decision-making software systems. In this paper, we will address gender classification as a part of the automatic profiling task. We show an experimental analysis of the performance of existing gender classification models based on external corpus and baselines for automatic profiling. We analyse in-depth the influence of the linguistic features in the classification accuracy of the model. After that analysis, we have put together a feature set for gender classification models in social networks with an accuracy performance above existing baselines.
Palabras clave
Gender classification
Author profiling
Feature relevance
Social media
 
Versión del editor
https://www.scitepress.org/Papers/2021/104319/104319.pdf

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias