High-Order Epistasis Detection in High Performance Computing Systems

Use este enlace para citar
http://hdl.handle.net/2183/31077
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-CompartirIgual 4.0
Coleccións
- Teses de doutoramento [2232]
Metadatos
Mostrar o rexistro completo do ítemTítulo
High-Order Epistasis Detection in High Performance Computing SystemsAutor(es)
Director(es)
Martín, María J.González-Domínguez, Jorge
Data
2022Resumo
[Resumo]
Nos últimos anos, os estudos de asociación do xenoma completo (Genome-Wide
Association Studies, GWAS) están a gañar moita popularidade de cara a buscar unha
explicación xenética á presenza ou ausencia de certas enfermidades nos humanos.Hai
un consenso nestes estudos sobre a existencia de interaccións xenéticas que condicionan
a expresión de enfermidades complexas, un fenómeno coñecido como epistasia.
Esta tese céntrase no estudo deste fenómeno empregando a computación de altas
prestacións (High-Performance Computing, HPC) e dende a súa perspectiva estadística:
a desviación da expresión dun fenotipo como a suma dos efectos individuais de
múltiples variantes xenéticas. Con este obxectivo desenvolvemos unha primeira ferramenta,
chamada MPI3SNP, que identifica interaccións de tres variantes a partir dun
conxunto de datos de entrada. MPI3SNP implementa unha busca exhaustiva empregando
un test de asociación baseado na Información Mutua, e explota os recursos de
clústeres de CPUs ou GPUs para acelerar a busca. Coa axuda desta ferramenta avaliamos
o estado da arte da detección de epistasia a través dun estudo que compara o rendemento
de vintesete ferramentas. A conclusión máis importante desta comparativa
é a incapacidade dos métodos non exhaustivos de atopar interacción ante a ausencia
de efectos marxinais (pequenos efectos de asociación das variantes individuais que
participan na epistasia). Por isto, esta tese continuou centrándose na optimización da
busca exhaustiva de epistasia. Por unha parte, mellorouse a eficiencia do test de asociación
a través dunha implantación vectorial do mesmo. Por outro lado, creouse un
algoritmo distribuído que implementa unha busca exhaustiva capaz de atopar epistasia
de calquera orden. Estes dous fitos lógranse en Fiuncho, unha ferramenta que integra
toda a investigación realizada, obtendo un rendemento en clústeres de CPUs que
supera a todas as súas alternativas no estado da arte. Adicionalmente, desenvolveuse
unha libraría para simular escenarios biolóxicos con epistasia chamada Toxo. Esta
libraría permite a simulación de epistasia seguindo modelos de interacción xenética
existentes para orde alto. [Resumen]
En los últimos años, los estudios de asociación del genoma completo (Genome-
Wide Association Studies, GWAS) están ganando mucha popularidad de cara a buscar
una explicación genética a la presencia o ausencia de ciertas enfermedades en los seres
humanos. Existe un consenso entre estos estudios acerca de que muchas enfermedades
complejas presentan interacciones entre los diferentes genes que intervienen en su
expresión, un fenómeno conocido como epistasia. Esta tesis se centra en el estudio de
este fenómeno empleando la computación de altas prestaciones (High-Performance
Computing, HPC) y desde su perspectiva estadística: la desviación de la expresión de
un fenotipo como suma de los efectos de múltiples variantes genéticas. Para ello se
ha desarrollado una primera herramienta, MPI3SNP, que identifica interacciones de
tres variantes a partir de un conjunto de datos de entrada. MPI3SNP implementa una
búsqueda exhaustiva empleando un test de asociación basado en la Información Mutua,
y explota los recursos de clústeres de CPUs o GPUs para acelerar la búsqueda.
Con la ayuda de esta herramienta, hemos evaluado el estado del arte de la detección
de epistasia a través de un estudio que compara el rendimiento de veintisiete herramientas.
La conclusión más importante de esta comparativa es la incapacidad de los
métodos no exhaustivos de localizar interacciones ante la ausencia de efectos marginales
(pequeños efectos de asociación de variantes individuales pertenecientes a una
relación epistática). Por ello, esta tesis continuó centrándose en la optimización de la
búsqueda exhaustiva. Por un lado, se mejoró la eficiencia del test de asociación a través
de una implementación vectorial del mismo. Por otra parte, se diseñó un algoritmo
distribuido que implementa una búsqueda exhaustiva capaz de encontrar relaciones
epistáticas de cualquier tamaño. Estos dos hitos se logran en Fiuncho, una herramienta
que integra toda la investigación realizada, obteniendo un rendimiento en clústeres
de CPUs que supera a todas sus alternativas del estado del arte. A mayores, también se
ha desarrollado una librería para simular escenarios biológicos con epistasia llamada
Toxo. Esta librería permite la simulación de epistasia siguiendomodelos de interacción
existentes para orden alto. [Abstract]
In recent years, Genome-Wide Association Studies (GWAS) have become more and
more popular with the intent of finding a genetic explanation for the presence or absence
of particular diseases in human studies. There is consensus about the presence
of genetic interactions during the expression of complex diseases, a phenomenon
called epistasis. This thesis focuses on the study of this phenomenon, employingHigh-
Performance Computing (HPC) for this purpose and from a statistical definition of the
problem: the deviation of the expression of a phenotype from the addition of the individual
contributions of genetic variants. For this purpose, we first developedMPI3SNP,
a programthat identifies interactions of three variants froman input dataset. MPI3SNP
implements an exhaustive search of epistasis using an association test based on the
Mutual Information and exploits the resources of clusters of CPUs or GPUs to speed up
the search. Then, we evaluated the state-of-the-art methods with the help of MPI3SNP
in a study that compares the performance of twenty-seven tools. The most important
conclusion of this study is the inability of non-exhaustive approaches to locate epistasis
in the absence of marginal effects (small association effects of individual variants
that partake in an epistasis interaction). For this reason, this thesis continued focusing
on the optimization of the exhaustive search. First, we improved the efficiency of
the association test through a vector implementation of this procedure. Then, we developed
a distributed algorithm capable of locating epistasis interactions of any order.
These two milestones were achieved in Fiuncho, a program that incorporates all the
research carried out, obtaining the best performance in CPU clusters out of all the alternatives
of the state-of-the-art. In addition, we also developed a library to simulate
particular scenarios with epistasis called Toxo. This library allows for the simulation of
epistasis that follows existing interaction models for high-order interactions.
Palabras chave
Epistasia
Bioinformática
Medicina-Informática
Bioinformática
Medicina-Informática
Dereitos
Atribución-NoComercial-CompartirIgual 4.0