Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Polynomial Reduction of Forks Into Logic Programs

Thumbnail
Ver/Abrir
Aguado_Felicidad_2022_Polynomial_Reduction_of_Forks.pdf (399.2Kb)
Use este enlace para citar
http://hdl.handle.net/2183/31038
Atribución-NoComercial-SinDerivadas 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución-NoComercial-SinDerivadas 4.0 Internacional
Colecciones
  • Investigación (FIC) [1679]
Metadatos
Mostrar el registro completo del ítem
Título
A Polynomial Reduction of Forks Into Logic Programs
Autor(es)
Aguado, Felicidad
Cabalar, Pedro
Fandiño, Jorge
Pearce, David
Pérez, Gilberto
Vidal, Concepción
Fecha
2022
Cita bibliográfica
AGUADO, Felicidad, CABALAR, Pedro, FANDINNO, Jorge, PEARCE, David, PÉREZ, Gilberto and VIDAL, Concepción, 2022. A polynomial reduction of forks into logic programs. Artificial Intelligence. 2022. Vol. 308, p. 103712. DOI https://doi.org/10.1016/j.artint.2022.103712
Resumen
[Abstract] In this research note we present additional results for an earlier published paper [1]. There, we studied the problem of projective strong equivalence (PSE) of logic programs, that is, checking whether two logic programs (or propositional formulas) have the same behaviour (under the stable model semantics) regardless of a common context and ignoring the effect of local auxiliary atoms. PSE is related to another problem called strongly persistent forgetting that consists in keeping a program’s behaviour after removing its auxiliary atoms, something that is known to be not always possible in Answer Set Programming. In [1], we introduced a new connective ‘|’ called fork and proved that, in this extended language, it is always possible to forget auxiliary atoms, but at the price of obtaining a result containing forks. We also proved that forks can be translated back to logic programs introducing new hidden auxiliary atoms, but this translation was exponential in the worst case. In this note we provide a new polynomial translation of arbitrary forks into regular programs that allows us to prove that brave and cautious reasoning with forks has the same complexity as that of ordinary (disjunctive) logic programs and paves the way for an efficient implementation of forks. To this aim, we rely on a pair of new PSE invariance properties.
Palabras clave
Answer set programming
Non-monotonic reasoning
Equilibrium logic
Denotational semantics
Forgetting
Strong equivalence
 
Descripción
Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG
Versión del editor
https://doi.org/10.1016/j.artint.2022.103712
Derechos
Atribución-NoComercial-SinDerivadas 4.0 Internacional

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias