Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

The New UPC++ DepSpawn High Performance Library for Data-Flow Computing with Hybrid Parallelism

Thumbnail
Ver/abrir
Fraguela_Basilio_B_2022_New_UPC++_DepSpawn.pdf (565.1Kb)
Use este enlace para citar
http://hdl.handle.net/2183/31002
Coleccións
  • Investigación (FIC) [1725]
Metadatos
Mostrar o rexistro completo do ítem
Título
The New UPC++ DepSpawn High Performance Library for Data-Flow Computing with Hybrid Parallelism
Autor(es)
Fraguela, Basilio B.
Andrade, Diego
Data
2022
Cita bibliográfica
Fraguela, B.B., Andrade, D. (2022). The New UPC++ DepSpawn High Performance Library for Data-Flow Computing with Hybrid Parallelism. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13350. Springer, Cham. https://doi.org/10.1007/978-3-031-08751-6_55
Resumo
[Abstract] Data-flow computing is a natural and convenient paradigm for expressing parallelism. This is particularly true for tools that automatically extract the data dependencies among the tasks while allowing to exploit both distributed and shared memory parallelism. This is the case of UPC++ DepSpawn, a new task-based library developed on UPC++ (Unified Parallel C++), a library for parallel computing on a Partitioned Global Address Space (PGAS) environment, and the well-known Intel TBB (Threading Building Blocks) library for multithreading. In this paper we present and evaluate the evolution of this library after changing its engine for shared memory parallelism and adapting it to the newest version of UPC++, which differs very strongly from the original version on which UPC++ DepSpawn was developed. As we will see, while keeping the same high level of programmability, the new version is on average 9.3% faster than the old one, the maximum speedup being 66.3%.
Palabras chave
Data-flow computing
Hybrid parallelism
PGAS
Runtimes
High-performance computing
Task-based parallelism
 
Descrición
This versión of the contribution has been accepted for publication, after peer review but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/978-3-031-08751-6_55. Use of this Accepted Version is subject to the publisher’s Accepted Manuscript terms of use https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
Versión do editor
https://doi.org/10.1007/978-3-031-08751-6_55

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións