Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards Automatic Image Enhancement with Genetic Programming and Machine Learning

Thumbnail
Ver/abrir
Correia_Joao_2022_Towards_Automatic_Image.pdf (15.32Mb)
Use este enlace para citar
http://hdl.handle.net/2183/30882
Atribución 4.0 Internacional
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0 Internacional
Coleccións
  • Investigación (FIC) [1685]
Metadatos
Mostrar o rexistro completo do ítem
Título
Towards Automatic Image Enhancement with Genetic Programming and Machine Learning
Autor(es)
Correia, Joao
Rodríguez-Fernández, Nereida
Vieira, Leonardo
Romero, Juan
Machado, Penousal
Data
2022
Cita bibliográfica
Correia, J.; Rodriguez-Fernandez, N.; Vieira, L.; Romero, J.; Machado, P. Towards Automatic Image Enhancement with Genetic Programming and Machine Learning. Appl. Sci. 2022, 12, 2212. https://doi.org/10.3390/app12042212
Resumo
[Abstract] Image Enhancement (IE) is an image processing procedure in which the image’s original information is improved, highlighting specific features to ease post-processing analyses by a human or machine. State-of-the-art image enhancement pipelines apply solutions to fixed and static constraints to solve specific issues in isolation. In this work, an IE system for image marketing is proposed, more precisely, real estate marketing, where the objective is to enhance the commercial appeal of the images, while maintaining a level of realism and similarity with the original image. This work proposes a generic image enhancement pipeline that combines state-of-the-art image processing filters, Machine Learning methods, and Evolutionary approaches, such as Genetic Programming (GP), to create a dynamic framework for Image Enhancement. The GP-based system is trained to optimize 4 metrics: Neural Image Assessment (NIMA) technical and BRISQUE, which evaluate the technical quality of the images; and NIMA aesthetics and PhotoILike, that evaluate the commercial attractiveness. It is shown that the GP model was able to find the best image quality enhancement (0.97 NIMA Aesthetics), while maintaining a high level of similarity with the original images (Structural Similarity Index Measure (SSIM) of 0.88). The framework has better performance according to the image quality metrics than the off-the-shelf image enhancement tool and the framework’s isolated parts.
Palabras chave
Genetic programming
Image enhancement
Image filters
Computer vision
 
Descrición
This article belongs to the Special Issue Genetic Programming, Theory, Methods and Applications
Versión do editor
https://doi.org/10.3390/app12042212
Dereitos
Atribución 4.0 Internacional

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións