Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas del RUC
    • FAQ
    • Derechos de autor
    • Más información en INFOguías UDC
  • Listar 
    • Comunidades
    • Buscar por:
    • Fecha de publicación
    • Autor
    • Título
    • Materia
  • Ayuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Español 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Boosting Perturbation-Based Iterative Algorithms to Compute the Median String

Thumbnail
Ver/Abrir
Mirabal_Pedro_2021_Boosting_Perturbation-Based_Iterative.pdf (941.1Kb)
Use este enlace para citar
http://hdl.handle.net/2183/30450
Atribución 4.0 Internacional
Excepto si se señala otra cosa, la licencia del ítem se describe como Atribución 4.0 Internacional
Colecciones
  • Investigación (FIC) [1683]
Metadatos
Mostrar el registro completo del ítem
Título
Boosting Perturbation-Based Iterative Algorithms to Compute the Median String
Autor(es)
Mirabal, Pedro
Abreu Salas, José Ignacio
Seco, Diego
Pedreira, Óscar
Chávez, Edgar
Fecha
2021
Cita bibliográfica
P. Mirabal, J. Abreu, D. Seco, Ó. Pedreira and E. Chávez, "Boosting Perturbation-Based Iterative Algorithms to Compute the Median String," in IEEE Access, vol. 9, pp. 169299-169308, 2021, doi: 10.1109/ACCESS.2021.3137767
Resumen
[Abstract] The most competitive heuristics for calculating the median string are those that use perturbation-based iterative algorithms. Given the complexity of this problem, which under many formulations is NP-hard, the computational cost involved in the exact solution is not affordable. In this work, the heuristic algorithms that solve this problem are addressed, emphasizing its initialization and the policy to order possible editing operations. Both factors have a significant weight in the solution of this problem. Initial string selection influences the algorithm’s speed of convergence, as does the criterion chosen to select the modification to be made in each iteration of the algorithm. To obtain the initial string, we use the median of a subset of the original dataset; to obtain this subset, we employ the Half Space Proximal (HSP) test to the median of the dataset. This test provides sufficient diversity within the members of the subset while at the same time fulfilling the centrality criterion. Similarly, we provide an analysis of the stop condition of the algorithm, improving its performance without substantially damaging the quality of the solution. To analyze the results of our experiments, we computed the execution time of each proposed modification of the algorithms, the number of computed editing distances, and the quality of the solution obtained. With these experiments, we empirically validated our proposal.
Palabras clave
Approximate median string
Algorithm initialization
Half space proximal neighbors
 
Versión del editor
https://doi.org/10.1109/ACCESS.2021.3137767
Derechos
Atribución 4.0 Internacional
ISSN
2169-3536

Listar

Todo RUCComunidades & ColeccionesPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor fecha de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

Mi cuenta

AccederRegistro

Estadísticas

Ver Estadísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Sugerencias