Skip navigation
  •  Inicio
  • UDC 
    • Cómo depositar
    • Políticas do RUC
    • FAQ
    • Dereitos de Autor
    • Máis información en INFOguías UDC
  • Percorrer 
    • Comunidades
    • Buscar por:
    • Data de publicación
    • Autor
    • Título
    • Materia
  • Axuda
    • español
    • Gallegan
    • English
  • Acceder
  •  Galego 
    • Español
    • Galego
    • English
  
Ver ítem 
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
  •   RUC
  • Facultade de Informática
  • Investigación (FIC)
  • Ver ítem
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards a Self-Sufficient Face Verification System

Thumbnail
Ver/abrir
Lopez_Lopez_Eric_2021_Self-Sufficient_Face_Verification.pdf (3.343Mb)
Use este enlace para citar
http://hdl.handle.net/2183/30090
Atribución 4.0 Internacional
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución 4.0 Internacional
Coleccións
  • Investigación (FIC) [1685]
Metadatos
Mostrar o rexistro completo do ítem
Título
Towards a Self-Sufficient Face Verification System
Autor(es)
López-López, Eric
Regueiro, Carlos V.
Pardo, Xosé Manuel
Franco, Annalisa
Lumini, Alessandra
Data
2021
Cita bibliográfica
LOPEZ-LOPEZ, Eric, REGUEIRO, Carlos V., PARDO, Xosé M., FRANCO, Annalisa and LUMINI, Alessandra, 2021. Towards a self-sufficient face verification system. Expert Systems with Applications. 15 July 2021. Vol. 174, p. 114734. DOI 10.1016/j.eswa.2021.114734
Resumo
[Abstract] The absence of a previous collaborative manual enrolment represents a significant handicap towards designing a face verification system for face re-identification purposes. In this scenario, the system must learn the target identity incrementally, using data from the video stream during the operational authentication phase. So, manual labelling cannot be assumed apart from the first few frames. On the other hand, even the most advanced methods trained on large-scale and unconstrained datasets suffer performance degradation when no adaptation to specific contexts is performed. This work proposes an adaptive face verification system, for the continuous re-identification of target identity, within the framework of incremental unsupervised learning. Our Dynamic Ensemble of SVM is capable of incorporating non-labelled information to improve the performance of any model, even when its initial performance is modest. The proposal uses the self-training approach and is compared against other classification techniques within this same approach. Results show promising behaviour in terms of both knowledge acquisition and impostor robustness.
Palabras chave
Adaptive biometrics
Video surveillance
Video-to-video face verification
Unsupervised learning
Incremental learning
 
Descrición
Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG
Versión do editor
https://doi.org/10.1016/j.eswa.2021.114734
Dereitos
Atribución 4.0 Internacional

Listar

Todo RUCComunidades e colecciónsPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulaciónEsta colecciónPor data de publicaciónAutoresTítulosMateriasGrupo de InvestigaciónTitulación

A miña conta

AccederRexistro

Estatísticas

Ver Estatísticas de uso
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Suxestións