Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards a Self-Sufficient Face Verification System

Thumbnail
View/Open
Lopez_Lopez_Eric_2021_Self-Sufficient_Face_Verification.pdf (3.343Mb)
Use this link to cite
http://hdl.handle.net/2183/30090
Atribución 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución 4.0 Internacional
Collections
  • Investigación (FIC) [1685]
Metadata
Show full item record
Title
Towards a Self-Sufficient Face Verification System
Author(s)
López-López, Eric
Regueiro, Carlos V.
Pardo, Xosé Manuel
Franco, Annalisa
Lumini, Alessandra
Date
2021
Citation
LOPEZ-LOPEZ, Eric, REGUEIRO, Carlos V., PARDO, Xosé M., FRANCO, Annalisa and LUMINI, Alessandra, 2021. Towards a self-sufficient face verification system. Expert Systems with Applications. 15 July 2021. Vol. 174, p. 114734. DOI 10.1016/j.eswa.2021.114734
Abstract
[Abstract] The absence of a previous collaborative manual enrolment represents a significant handicap towards designing a face verification system for face re-identification purposes. In this scenario, the system must learn the target identity incrementally, using data from the video stream during the operational authentication phase. So, manual labelling cannot be assumed apart from the first few frames. On the other hand, even the most advanced methods trained on large-scale and unconstrained datasets suffer performance degradation when no adaptation to specific contexts is performed. This work proposes an adaptive face verification system, for the continuous re-identification of target identity, within the framework of incremental unsupervised learning. Our Dynamic Ensemble of SVM is capable of incorporating non-labelled information to improve the performance of any model, even when its initial performance is modest. The proposal uses the self-training approach and is compared against other classification techniques within this same approach. Results show promising behaviour in terms of both knowledge acquisition and impostor robustness.
Keywords
Adaptive biometrics
Video surveillance
Video-to-video face verification
Unsupervised learning
Incremental learning
 
Description
Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG
Editor version
https://doi.org/10.1016/j.eswa.2021.114734
Rights
Atribución 4.0 Internacional

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback