How Important Is Data Quality? Best Classifiers vs Best Features

Use este enlace para citar
http://hdl.handle.net/2183/30051
A non ser que se indique outra cousa, a licenza do ítem descríbese como Atribución-NoComercial-SinDerivadas 4.0 Internacional
Coleccións
- Investigación (FIC) [1685]
Metadatos
Mostrar o rexistro completo do ítemTítulo
How Important Is Data Quality? Best Classifiers vs Best FeaturesData
2021Cita bibliográfica
MORÁN-FERNÁNDEZ, Laura, BÓLON-CANEDO, Verónica and ALONSO-BETANZOS, Amparo, 2022. How important is data quality? Best classifiers vs best features. Neurocomputing. 22 January 2022. Vol. 470, p. 365–375. DOI 10.1016/j.neucom.2021.05.107
Resumo
[Abstract] The task of choosing the appropriate classifier for a given scenario is not an easy-to-solve question. First, there is an increasingly high number of algorithms available belonging to different families. And also there is a lack of methodologies that can help on recommending in advance a given family of algorithms for a certain type of datasets. Besides, most of these classification algorithms exhibit a degradation in the performance when faced with datasets containing irrelevant and/or redundant features. In this work we analyze the impact of feature selection in classification over several synthetic and real datasets. The experimental results obtained show that the significance of selecting a classifier decreases after applying an appropriate preprocessing step and, not only this alleviates the choice, but it also improves the results in almost all the datasets tested.
Palabras chave
Feature selection
Filters
Preprocessing
High dimensionality
Classification
Data análisis
Filters
Preprocessing
High dimensionality
Classification
Data análisis
Descrición
Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG
Versión do editor
Dereitos
Atribución-NoComercial-SinDerivadas 4.0 Internacional