Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
  •   DSpace Home
  • Facultade de Informática
  • Investigación (FIC)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

How Important Is Data Quality? Best Classifiers vs Best Features

Thumbnail
View/Open
Moran_Fernandez_Laura_2021_How_Important_Is_Data_Quality.pdf (674.4Kb)
Use this link to cite
http://hdl.handle.net/2183/30051
Atribución-NoComercial-SinDerivadas 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución-NoComercial-SinDerivadas 4.0 Internacional
Collections
  • Investigación (FIC) [1685]
Metadata
Show full item record
Title
How Important Is Data Quality? Best Classifiers vs Best Features
Author(s)
Morán-Fernández, Laura
Bolón-Canedo, Verónica
Alonso-Betanzos, Amparo
Date
2021
Citation
MORÁN-FERNÁNDEZ, Laura, BÓLON-CANEDO, Verónica and ALONSO-BETANZOS, Amparo, 2022. How important is data quality? Best classifiers vs best features. Neurocomputing. 22 January 2022. Vol. 470, p. 365–375. DOI 10.1016/j.neucom.2021.05.107
Abstract
[Abstract] The task of choosing the appropriate classifier for a given scenario is not an easy-to-solve question. First, there is an increasingly high number of algorithms available belonging to different families. And also there is a lack of methodologies that can help on recommending in advance a given family of algorithms for a certain type of datasets. Besides, most of these classification algorithms exhibit a degradation in the performance when faced with datasets containing irrelevant and/or redundant features. In this work we analyze the impact of feature selection in classification over several synthetic and real datasets. The experimental results obtained show that the significance of selecting a classifier decreases after applying an appropriate preprocessing step and, not only this alleviates the choice, but it also improves the results in almost all the datasets tested.
Keywords
Feature selection
Filters
Preprocessing
High dimensionality
Classification
Data análisis
 
Description
Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG
Editor version
http://dx.doi.org/10.1016/j.neucom.2021.05.107
Rights
Atribución-NoComercial-SinDerivadas 4.0 Internacional

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback