Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (37ª. 2016. Madrid)
  • View Item
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (37ª. 2016. Madrid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Indoor Positioning Prediction System Based on Wireless Networks and Depth Sensing Cameras

Thumbnail
View/Open
2016_DuqueDomingo_Jaime_Indoor-positioning-prediction-system-wireless-networks-depth-sensing-cameras.pdf (1.393Mb)
Use this link to cite
http://hdl.handle.net/2183/29728
Atribución-NoComercial-CompartirIgual 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 4.0 Internacional
Collections
  • Jornadas de Automática (37ª. 2016. Madrid) [173]
Metadata
Show full item record
Title
Indoor Positioning Prediction System Based on Wireless Networks and Depth Sensing Cameras
Author(s)
Duque Domingo, Jaime
Cerrada, Carlos
Valero, Enrique
Date
2016
Citation
Duque Domingo, J., Cerrada, C., Valero, E. Indoor positioning prediction system based on wireless networks and depth sensing cameras. En Actas de las XXXVII Jornadas de Automática. 7, 8 y 9 de septiembre de 2016, Madrid (pp. 1237-1242). DOI capítulo: https://doi.org/10.17979/spudc.9788497498081.1237 DOI libro: https://doi.org/10.17979/spudc.9788497498081
Abstract
[Abstract] This work presents a new system for predicting the movement of people in indoor user environments, based on an advanced Indoor Positioning System (IPS) developed previously by the authors. The mentioned IPS proposes the combination of WiFi Positioning System (WPS) and depth maps provided by RGB-D cameras to improve the efficiency of existing methods, based uniquely on wireless positioning techniques. In this approach, the prediction of movements is carried out by means of a proactive strategy, delivering the next estimated position of the person. This estimation provides a richer location and context information, which is useful for ubiquitous computing purposes. For example, energy consumption can be optimized if lighting or electronic devices are turned on/off by means of the user trajectory prediction. This paper shows how several techniques, applied for the developed IPS, offer different solutions to the indoor prediction problem, and it discusses about which of them gives better results
Keywords
Positioning
WPS
RGB-D sensors
Kinect
WiFi
Fingerprint
Trajectory
Skeletons
Depth map
Movement prediction
Ubiquitous computing
 
Editor version
https://doi.org/10.17979/spudc.9788497498081.1237
Rights
Atribución-NoComercial-CompartirIgual 4.0 Internacional
ISBN
978-84-617-4298-1 (UCM)
 
978-84-9749-808-1 (UDC electrónico)
 
Related resource
https://doi.org/10.17979/spudc.9788497498081

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback