Skip navigation
  •  Home
  • UDC 
    • Getting started
    • RUC Policies
    • FAQ
    • FAQ on Copyright
    • More information at INFOguias UDC
  • Browse 
    • Communities
    • Browse by:
    • Issue Date
    • Author
    • Title
    • Subject
  • Help
    • español
    • Gallegan
    • English
  • Login
  •  English 
    • Español
    • Galego
    • English
  
View Item 
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (37ª. 2016. Madrid)
  • View Item
  •   DSpace Home
  • Publicacións UDC
  • Congresos e cursos UDC
  • Jornadas de Automática
  • Jornadas de Automática (37ª. 2016. Madrid)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Framework para el modelado de Interacciones Humano-Robot basadas en aprendizaje no supervisado

Thumbnail
View/Open
2016_Ramon_Vigo_Rafael_Framework_para_el_modelado_de_Interaccione_Humano-Robot .pdf (1.462Mb)
Use this link to cite
http://hdl.handle.net/2183/29677
Atribución-NoComercial-CompartirIgual 4.0 Internacional
Except where otherwise noted, this item's license is described as Atribución-NoComercial-CompartirIgual 4.0 Internacional
Collections
  • Jornadas de Automática (37ª. 2016. Madrid) [173]
Metadata
Show full item record
Title
Framework para el modelado de Interacciones Humano-Robot basadas en aprendizaje no supervisado
Author(s)
Ramón-Vigo, Rafael
Merino, Luis
Caballero, Fernando
Date
2016
Citation
Ramón-Vigo, R., Merino, L., Caballero, F. Framework para el modelado de Interacciones Humano-Robot basadas en aprendizaje no supervisado. 7, 8 y 9 de septiembre de 2016, Madrid (pp. 840-847). DOI capítulo: https://doi.org/10.17979/spudc.9788497498081.0840 DOI libro: https://doi.org/10.17979/spudc.9788497498081
Abstract
[Resumen] En el presente trabajo se propone un marco de referencia para el aprendizaje de interacciones entre personas y robots, basado en el uso conjunto de una técnica de aprendizaje sin supervisión y de un planificador de muestreo de configuraciones. Particularmente, se hace uso de los Modelos Mixtos Gausianos (GMMs en inglés) para modelar la interacción física de un robot y de una persona cuando este robot es teleoperado por alguien experto. De este modo, distintos comportamientos tales como evitar, acercarse o seguir a una persona pueden ser fácilmente derivados e incluso combinados gracias a las propiedades de las GMM. Los modelos aprendidos se integran en un planificador basado en muestreo, un RRT*, bajo dos preceptos: primero, como una funci on de costes que permita ponderar el espacio de estados del robot como más afín a los comportamientos aprendidos y segundo, como sesgo del muestreo para descartar aquellas zonas menos probables según se haya concluido de las demostraciones. El algoritmo se ha probado exitosamente en el laboratorio usando un robot real y las trayectorias provistas por un experto.
Keywords
Planificación óptima
Gaussian mixture models
Aprendizaje por demostración
Navegación social
 
Editor version
https://doi.org/10.17979/spudc.9788497498081.0840
Rights
Atribución-NoComercial-CompartirIgual 4.0 Internacional
ISBN
978-84-617-4298-1 (UCM)
 
978-84-9749-808-1 (UDC electrónico)
 
Related resource
https://doi.org/10.17979/spudc.9788497498081

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic DegreeThis CollectionBy Issue DateAuthorsTitlesSubjectsResearch GroupAcademic Degree

My Account

LoginRegister

Statistics

View Usage Statistics
Sherpa
OpenArchives
OAIster
Scholar Google
UNIVERSIDADE DA CORUÑA. Servizo de Biblioteca.    DSpace Software Copyright © 2002-2013 Duraspace - Send Feedback